A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Tr...A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Transform Infrared spectroscopy( FTIR). The experimental results indicate that the yield of the monomer was 99.06%, and the conversion of the monomer and the grafting yield of QL were 93.69% and 185.78%, respectively. The feasibility of QL as the flocculant to be applied in color removal of five artificial dyes, erioehrome black T(dye A), gongo red(dye B ), direct fast black G (dye C ), cuprofix blue green B (dye D ), and acid black ATT (dye E ) was examined. Results show that OL exhihits the favorable flocculation nerformance and high stability.展开更多
A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The I...A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.展开更多
The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of qu...The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.展开更多
A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of var...A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products.展开更多
The flotation behaviors of decyltrimethylammonium (103C), dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC) and cetyltrimethylammonium chloride (CTAC) on kaolinite of different part...The flotation behaviors of decyltrimethylammonium (103C), dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC) and cetyltrimethylammonium chloride (CTAC) on kaolinite of different particle size fraction were studied. The adsorbed amount and adsorption isotherms of collectors on kaolinite were determined for painstaking investigation into the adsorption of quaternary amines at kaolinite-water interface by ultraviolet spectrophotometer methods. The flotation results show that the flotation recovery of kaolinite of different particle fraction increases with an increase in pH when 103C, DTAC, TTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. Particle size of kaolinite has a strong effect on flotation. The flotation recovery of fine kaolinite decreases with the carbon chain of quaternary ammonium salts collectors increasing, while coarse kaolinite is on the contrary. The adsorbed amount tests and adsorption isotherms show that adsorbed amount increases when the particle size of kaolinite increases or when the carbon chain length of quaternary ammonium salts increases. Within the range of flotation collector concentration, the longer the hydrocarbon chain, the more probable to be absolutely adsorbed by fine kaolinite particles and then the lower the collector concentration in the bulk, which leds to lower flotation recovery.展开更多
The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium ...The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).展开更多
A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-di...A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.展开更多
A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-...A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.展开更多
Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgr...Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.展开更多
The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create meso...The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create mesopores in traditional microporous zeolites and retain all advantages of microporous zeolites. Mesoporous Zeolite Socony Mobile-Five( ZSM-5) zeolite was synthesized by a new double ester base long carbon chains organosilane quaternary ammonium salt as the soft template agent in hydrothermal method.The structure of the acquired zeolite crystals was confirmed by fieldemission scanning electron microscopy( FE-SEM), transmission electron microscopy( TEM), nitrogen adsorption-desorption measurements and X-ray diffraction( XRD),which indicated that their structure had the same characteristics as traditional ZSM-5 zeolites. Compared with traditional ZSM-5 zeolite,there were 4 nm and 15 nm mesopores in the crystal. The prepared hierarchical porous ZSM-5 zeolite was expected to be effective catalytic materials for chemical reactions involving large molecules.展开更多
Two biodegradable quaternary ammonium salts were synthesized and used as cationic collectors in processing iron ores by froth flotation. The flotation behaviors of iron minerals with the new biodegradable quaternary a...Two biodegradable quaternary ammonium salts were synthesized and used as cationic collectors in processing iron ores by froth flotation. The flotation behaviors of iron minerals with the new biodegradable quaternary ammonium collectors were investigated by micro-flotation tests of quartz (SiO2) and magnetite (Fe3O4). It was observed that the new biodegradable collectors were effective in separating quartz from magnetite by flotation. At the collector concentration of 1 × 10﹣4 mol/L, the recovery of quartz using the M301 and M302 collectors can reach its maximum of 67.97% and 91.18%, respectively. For a wide pH range, they also show good selectivity. By the measuring zeta potentials of the new quaternary ammonium salts, the results show that quaternary ammonium salt is preferred to adsorb on the surface of quartz. The two quaternary ammonium collectors are also determined as readily biodegradable collectors, according to the OECD301B evaluation standard.展开更多
New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solu...New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solution of triethylamine hydrochloride successively. The second reaction needs no phase transfer catalyst to accelerate, since the product formed can act as a phase transfer catalyst. The prepolymer obtained contains both photocrosslinkable acrylate groups and hydrophilic quaternary ammonium salt groups. Optimum conditions for these reactions were studied. The photosensitivity of the prepolymer was also investigated. The effects of different photoinitiators, different crosslinkable diluent monomers and amine accelerator on the photosensitivity of the prepolymer were compared. The photoinitiator of hydrogen abstraction type is still effective without using amine or alcohol as accelerator, because the prepolymer contains a H beside the OH groups formed in the ring-opening reactions.展开更多
In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alco...In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alcohol with hydrogen peroxide. A wide variety of catalysts with different quaternary groups and different quaternary chain length substituents were examined. The activity of single 搊nium?salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support. The activity of polymer-supported ammonium and phosphonium salts increases with the number of carbon atoms contained in the alkyl radicals of the onium and of the functionalization degree with phosphonium groups.展开更多
A systematic study on the synthesis and antibacterial activity of the quaternary "onium" salts grafted on an insoluble "gel-type" styrene-7% divinylbenzene copolymer by polymer-analogous reactions ...A systematic study on the synthesis and antibacterial activity of the quaternary "onium" salts grafted on an insoluble "gel-type" styrene-7% divinylbenzene copolymer by polymer-analogous reactions is showed. Antibacterial activity of quaternary ammonium and/or phosphonium salts grafted on polymer-supports has been studied against Staphylococcus aureus and Escherichia coli. A wide variety of "onium" salts bound to macromolecular supports with different quaternary groups and different quaternary chain length substituents were examined. The antibacterial activity of mixed "onium" salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support.展开更多
Copolymers PMDAB-co-AA with excellent antibacterial activity were designed and prepared(MDAB/AA=methacryloxyethyldimethyl dodecyl ammonium bromide with acrylamide).The chemical structures of the copolymers were char...Copolymers PMDAB-co-AA with excellent antibacterial activity were designed and prepared(MDAB/AA=methacryloxyethyldimethyl dodecyl ammonium bromide with acrylamide).The chemical structures of the copolymers were characterized by Fourier transform infrared(FTIR),1 H NMR,13 C NMR and chemical titration.The antimicrobial activities and kinetics of the copolymer against E.coli and S.aureus were examined by viable cell counting method.The compositions of the copolymers could be easily controlled by the feed molar ratio of MDAB to AA.Furthermore,the highest antibacterial activity was achieved when the molar fraction of MDAB was in a range of 5%―20%,and the killing rate reached 100% under the test conditions.In addition,the antibacterial activity of PMDAB-co-AA was maintained and stable without any loss after 15 times of repeated usage.It was proved that the PMDAB-co-AA samples targeted at cell membrane,and caused serious damage to cell integrity and inner membrane permeation.The surrounding conditions,such as pH and inorgainc salts concentrations(CaCl2 or NaCl),also affected their antibacterial activities.展开更多
A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphat...A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.展开更多
基金Supported by the National Nature Science Technology Item of of China(No.2005DC105005-01).
文摘A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Transform Infrared spectroscopy( FTIR). The experimental results indicate that the yield of the monomer was 99.06%, and the conversion of the monomer and the grafting yield of QL were 93.69% and 185.78%, respectively. The feasibility of QL as the flocculant to be applied in color removal of five artificial dyes, erioehrome black T(dye A), gongo red(dye B ), direct fast black G (dye C ), cuprofix blue green B (dye D ), and acid black ATT (dye E ) was examined. Results show that OL exhihits the favorable flocculation nerformance and high stability.
文摘A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.
基金Project(2005CB623701) supported by the National Key Fundamental Research and Development Program of China
文摘The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.
文摘A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products.
基金the National Natural Science Foundation of China (No.50974134)the National Basic Research Program of China (No.2005CB623701)
文摘The flotation behaviors of decyltrimethylammonium (103C), dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC) and cetyltrimethylammonium chloride (CTAC) on kaolinite of different particle size fraction were studied. The adsorbed amount and adsorption isotherms of collectors on kaolinite were determined for painstaking investigation into the adsorption of quaternary amines at kaolinite-water interface by ultraviolet spectrophotometer methods. The flotation results show that the flotation recovery of kaolinite of different particle fraction increases with an increase in pH when 103C, DTAC, TTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. Particle size of kaolinite has a strong effect on flotation. The flotation recovery of fine kaolinite decreases with the carbon chain of quaternary ammonium salts collectors increasing, while coarse kaolinite is on the contrary. The adsorbed amount tests and adsorption isotherms show that adsorbed amount increases when the particle size of kaolinite increases or when the carbon chain length of quaternary ammonium salts increases. Within the range of flotation collector concentration, the longer the hydrocarbon chain, the more probable to be absolutely adsorbed by fine kaolinite particles and then the lower the collector concentration in the bulk, which leds to lower flotation recovery.
文摘The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).
基金Project(51371198)supported by the National Natural Science Foundation of China
文摘A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.
文摘A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.
基金This work is funded by the National Natural Science Foundation of China(Grant No.21776306).
文摘Wettability is an important surface property that deserves to further explore the factors on its alteration.Series of bis-N-heterocyclic quaternary ammonium salts with different spacer length and N-heterocyclic headgroups(morpholinium(BMMB,BMMD and BMMH),piperidinium(BPMH)and piperazinium(BMPMH))have been synthesized and employed for altering the wettability of vermiculite and its derivates(Vts)treated by Li^(+)-saturated heating method.The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),thermogravimetric analysis(TG-DTG),scanning electron microscopy(SEM)and N_(2)adsorption/desorption isotherms indicate that all of the bis-N-heterocyclic quaternary ammonium salts have been successfully inserted into the vermiculite layers,leading to the organic monolayer.The results of capillary rise tests combined with Lipophilic to Hydrophilic Ratio(LHR)values unveil the wettability alteration of the organo-Vts.As the layer charge decreases,the hydrophilicity of the organo-Vts gradually increases,which is probably caused by the decline in binding sites.As the result of the change in spacer length of modifier,the wetting properties of morpholinium-based organo-Vts change in order of BMMD-Vts>BMMH-Vts>BMMB-Vts,and difference in N-heterocyclic headgroups leads to the sequence of wettability:BMPMH-Vts>BPMH-Vts>BMMH-Vts.Layer charge of Vt,spacer length and the type of the N-heterocyclic headgroup of modifier have the synergistic effect on the regulation of the wettability.
基金National Natural Science Foundation of China(No.21676053)
文摘The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create mesopores in traditional microporous zeolites and retain all advantages of microporous zeolites. Mesoporous Zeolite Socony Mobile-Five( ZSM-5) zeolite was synthesized by a new double ester base long carbon chains organosilane quaternary ammonium salt as the soft template agent in hydrothermal method.The structure of the acquired zeolite crystals was confirmed by fieldemission scanning electron microscopy( FE-SEM), transmission electron microscopy( TEM), nitrogen adsorption-desorption measurements and X-ray diffraction( XRD),which indicated that their structure had the same characteristics as traditional ZSM-5 zeolites. Compared with traditional ZSM-5 zeolite,there were 4 nm and 15 nm mesopores in the crystal. The prepared hierarchical porous ZSM-5 zeolite was expected to be effective catalytic materials for chemical reactions involving large molecules.
文摘Two biodegradable quaternary ammonium salts were synthesized and used as cationic collectors in processing iron ores by froth flotation. The flotation behaviors of iron minerals with the new biodegradable quaternary ammonium collectors were investigated by micro-flotation tests of quartz (SiO2) and magnetite (Fe3O4). It was observed that the new biodegradable collectors were effective in separating quartz from magnetite by flotation. At the collector concentration of 1 × 10﹣4 mol/L, the recovery of quartz using the M301 and M302 collectors can reach its maximum of 67.97% and 91.18%, respectively. For a wide pH range, they also show good selectivity. By the measuring zeta potentials of the new quaternary ammonium salts, the results show that quaternary ammonium salt is preferred to adsorb on the surface of quartz. The two quaternary ammonium collectors are also determined as readily biodegradable collectors, according to the OECD301B evaluation standard.
文摘New water soluble and photocrosslinkable prepolymers containing acrylate and quaternary ammonium salt groups were synthesized from epoxy phenolic resin via ring-opening reaction with acrylic acid and with aqueous solution of triethylamine hydrochloride successively. The second reaction needs no phase transfer catalyst to accelerate, since the product formed can act as a phase transfer catalyst. The prepolymer obtained contains both photocrosslinkable acrylate groups and hydrophilic quaternary ammonium salt groups. Optimum conditions for these reactions were studied. The photosensitivity of the prepolymer was also investigated. The effects of different photoinitiators, different crosslinkable diluent monomers and amine accelerator on the photosensitivity of the prepolymer were compared. The photoinitiator of hydrogen abstraction type is still effective without using amine or alcohol as accelerator, because the prepolymer contains a H beside the OH groups formed in the ring-opening reactions.
文摘In this study was to investigate, by phase-transfer catalysis, the activity of single and mixed ammonium and phosphonium salts grafted on a 揼el-type?styrene-7% divinylbenzene copolymer in the oxidation of benzyl alcohol with hydrogen peroxide. A wide variety of catalysts with different quaternary groups and different quaternary chain length substituents were examined. The activity of single 搊nium?salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support. The activity of polymer-supported ammonium and phosphonium salts increases with the number of carbon atoms contained in the alkyl radicals of the onium and of the functionalization degree with phosphonium groups.
文摘A systematic study on the synthesis and antibacterial activity of the quaternary "onium" salts grafted on an insoluble "gel-type" styrene-7% divinylbenzene copolymer by polymer-analogous reactions is showed. Antibacterial activity of quaternary ammonium and/or phosphonium salts grafted on polymer-supports has been studied against Staphylococcus aureus and Escherichia coli. A wide variety of "onium" salts bound to macromolecular supports with different quaternary groups and different quaternary chain length substituents were examined. The antibacterial activity of mixed "onium" salts increases as a consequence of the association of ammonium and phosphonium salts grafted on the same polymeric support.
基金Supported by the National Natural Science Foundation of China(No.50673101)the Project of the Department of Education of Guangdong Province,China(No.cgzhzd0901)
文摘Copolymers PMDAB-co-AA with excellent antibacterial activity were designed and prepared(MDAB/AA=methacryloxyethyldimethyl dodecyl ammonium bromide with acrylamide).The chemical structures of the copolymers were characterized by Fourier transform infrared(FTIR),1 H NMR,13 C NMR and chemical titration.The antimicrobial activities and kinetics of the copolymer against E.coli and S.aureus were examined by viable cell counting method.The compositions of the copolymers could be easily controlled by the feed molar ratio of MDAB to AA.Furthermore,the highest antibacterial activity was achieved when the molar fraction of MDAB was in a range of 5%―20%,and the killing rate reached 100% under the test conditions.In addition,the antibacterial activity of PMDAB-co-AA was maintained and stable without any loss after 15 times of repeated usage.It was proved that the PMDAB-co-AA samples targeted at cell membrane,and caused serious damage to cell integrity and inner membrane permeation.The surrounding conditions,such as pH and inorgainc salts concentrations(CaCl2 or NaCl),also affected their antibacterial activities.
基金supported by Open Foundation of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources of China(No.CCUM-KY-2310)Science and Technology Program of Guizhou Province,China(Qiankehe support(2020)2Y048).
文摘A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.