Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to inv...Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Prclet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.展开更多
Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system tha...Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.展开更多
Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed in...Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed introduction of the slag comprehensive utilization at Baosteel is given. The details of Baosteel' s comprehensive utilization in the fields of simering materials, returned slag for steelmaking, road construction, cement production, mixed concrete, new construction materials, ground-filling materials and reinforced material for soft earth are given. Emphasis is placed on source management and ensuring that from both organizational and managerial perspectives, Baosteel' s slag processing techniques are safe and energy-saving, thus constantly demonstrating the issue of sustainable development.展开更多
High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model c...High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2007AA05Z215)the Fundamental Research Funds for the Central Universities(Grant No.FRF-AS-10-005B)
文摘Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Prclet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.
基金supported by the Technical Education Quality Improvement Programme (TEQIP),India (NITC/TEQIP-II/R & d/2014)
文摘Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.
文摘Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed introduction of the slag comprehensive utilization at Baosteel is given. The details of Baosteel' s comprehensive utilization in the fields of simering materials, returned slag for steelmaking, road construction, cement production, mixed concrete, new construction materials, ground-filling materials and reinforced material for soft earth are given. Emphasis is placed on source management and ensuring that from both organizational and managerial perspectives, Baosteel' s slag processing techniques are safe and energy-saving, thus constantly demonstrating the issue of sustainable development.
基金supported by the National Natural Science Foundation of China (Grant No. 50875234)the National Science and Technology Support Program of China (Grant No. 2006BAF01B09-7)
文摘High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.