期刊文献+
共找到1,884篇文章
< 1 2 95 >
每页显示 20 50 100
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
1
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts 被引量:3
2
作者 Pierre Balage John Lopez +2 位作者 Guillaume Bonamis Clemens Hönninger Inka Manek-Hönninger 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期193-200,共8页
We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal ... We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal cumulative effects,we obtained crack-free holes of aspect ratios exceeding 30 in sodalime and 70 in fused silica.The results are discussed in terms of inner wall morphology,aspect ratio and drilling speed. 展开更多
关键词 femtosecond laser glass GHz-bursts percussion drilling
下载PDF
In situ strength profiles along two adjacent vertical drillholes from digitalization of hydraulic rotary drilling 被引量:4
3
作者 Xuefan Wang Peng Peng +1 位作者 Zhigang Shan Zhongqi Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期146-168,共23页
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from... Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects. 展开更多
关键词 drilling process monitoring(DPM) Hydraulic rotary coring process Constant drilling speed Coring-resistant strength
下载PDF
Integrated design and control technology of liner completion and drilling for horizontal wells
4
作者 GAO Deli XIAN Baoan BI Yansen 《Petroleum Exploration and Development》 SCIE 2024年第4期1009-1021,共13页
Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of... Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells. 展开更多
关键词 horizontal well liner completion and drilling double tubular strings liner differential rotary drilling tool face control horizontal extension limit
下载PDF
Micro-macro fracture mechanism of heterogeneous granite in percussive drilling
5
作者 Wei-Ji Liu Yan-Fei Wang +1 位作者 Zhao-Wang Dan Xiao-Hua Zhu 《Petroleum Science》 SCIE EI CSCD 2023年第5期3131-3142,共12页
The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking e... The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking efficiency and ROP.However,the rock-breaking mechanism of percussive drilling is still unclear enough,especially the micro-fracture mechanism of rock under confining pressure(under lateral pressure and hydraulic pressure).In this paper,the impact rock breaking experiments by four kinds of Polycrystalline Diamond Compact(PDC)cutters are carried out using a drop-weight impact testing machine and an acoustic emission(AE)recording system,the influence of parameters such as cutter shape,rake angle,and impact energy on rock-breaking are systematically analyzed.This study includes a numerical simulation to examine the process of crack initiation,propagation,and cuttings formation during the impact process with the consideration of confining pressure.The results show the conicalshaped cutter is the most aggressive with high breaking efficiency.The penetration depth of the cutter is mainly influenced by the impact energy and cutter shape than the rake angle of the cutter.There exists critical impact energy makes the rock breaking efficiency the highest.The critical impact energy is about 40 J when using the conical-shaped cutter with a rake angle of 15°.The rock mainly failed in tensile mode,and the inter-grain crack is the main crack.Hydraulic pressure can inhibit the formation of horizontal cracks,while lateral pressure can inhibit the formation of vertical cracks and reduce the proportion of tensile cracks.The research results can provide some reference and basis for improving the rock-breaking efficiency in deep hard formations. 展开更多
关键词 percussive drilling PFC Rock fragmentation characteristics Rock breaking efficiency
下载PDF
Evaluation of the energy efficiency of rotary percussive drilling using dimensionless energy index 被引量:3
6
作者 V.N.Oparin V.N.Karpov +1 位作者 V.V.Timonin A.I.Konurin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1486-1500,共15页
This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-... This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-stress rocks having nonuniform physico-mechanical properties. We review the long-term research and development in the specified area of science and technology, including research and development projects implemented at the Institute of Mining, Siberian Branch of the Russian Academy of Sciences. A new modified expression of Oparin’s dimensionless energy criterion of volumetric rock destruction k is introduced. The range of in situ values is determined for the energy criterion of volumetric rock destruction at the optimized energy efficiency of rotary percussive drilling. The temporospatial intervals of geotechnical monitoring are found to control pneumatic drilling energy efficiency at subsoil use objects in Russia. The integrated experimental, theoretical and geotechnical approach to the comprehensive investigation of real-time processes of rock fracture in rotary percussive drilling using the energy concept possesses the necessary geomechanical performance-and-technology potential to create the next level geotechnical monitoring of drilling systems for various purposes, including determination of physico-mechanical properties and the stress-strain analysis of rock mass in full-scale drilling. 展开更多
关键词 rotary percussive drilling Geotechnical monitoring drilling machine Energy criterion Energy efficiency
下载PDF
Exploration and determination of the principles of rotary-percussive underground slimhole drilling 被引量:1
7
作者 Shadrina Anastasija Saruev Lev 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期245-249,共5页
A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thr... A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments. 展开更多
关键词 rotary-percussive drilling Smaller diameter holes drill string Nipple thread connection Power pulse percussive energy
下载PDF
Bifurcations and the penetrating rate analysis of a model for percussive drilling 被引量:3
8
作者 Qing-Jie Cao Marian Wiercigroch +1 位作者 Ekaterina Pavlovskaia Shao-Pu Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期467-475,共9页
In this paper, we investigate a low dimensional model of percussive drilling with vibro-impact to mimic the nonlinear dynamics of the bounded progression. Non- holonomity which arises in the stick-slip caused by the i... In this paper, we investigate a low dimensional model of percussive drilling with vibro-impact to mimic the nonlinear dynamics of the bounded progression. Non- holonomity which arises in the stick-slip caused by the impact during drilling fails to be correctly identified via the classical techniques. A reduced model without non-holono- mity is derived by the introduction of a new state variable, of which averaging technique is employed successfully to detect the periodic motions. Local bifurcations are presented directly by using C-L method. Numerical simulations and the penetrating rate analysis along different choices of parame- ters have been carried out to probe the nonlinear behaviour and the optimal penetrating rate of the drilling system. 展开更多
关键词 BIFURCATION CHAOS Non-holonomity percussive drilling
下载PDF
Prediction of rotary drilling penetration rate in iron ore oxides using rock engineering system 被引量:1
9
作者 Hossein Inanloo Arabi Shad Farhang Sereshki +1 位作者 Mohammad Ataei Mohammad Karamoozian 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期407-413,共7页
Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective paramete... Prediction of the drilling penetration rate is one of the important parameters in mining operations. This parameter has a direct impact on the mine planning and cost of mining operations, Generally, effective parameters on the penetration rate is divided into two classes: rock mass properties and specifications of the machine, The chemical components of intact rock have a direct effect in determining rock mechan- ical properties, Theses parameters usually have not been investigated in any research on the rock drill- ability, In this study, physical and mechanical properties of iron ore were studied based on the amount of magnetite percent, According to the results of the tests, the effective parameters on the pen- etration rate of the rotary drilling machines were divided into three classes: specifications of the machi- nes, rock mass properties and chemical component of intact rock, Then, the rock drillahility was studied using rock engineering systems, The results showed that feed, rotation, rock mass index and iron oxide percent have important effect on penetration rate, Then a quadratic equation with 0,896 determination coefficient has been obtained, Also, the results showed that chemical components can he described as new parameters in rotary drill penetration rate, 展开更多
关键词 Penetration rate rotary drill Rock engineering system Chemical components
下载PDF
Rock fracture density characterization using measurement while drilling(MWD) techniques 被引量:8
10
作者 Mohammad Babaei Khorzoughi Robert Hall Derek Apel 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期859-864,共6页
Accurate determination of rock mass properties is a critical part of open-pit mine planning activities to enable more prescriptive blast designs to achieve improved loading and hauling and downstream process efficienc... Accurate determination of rock mass properties is a critical part of open-pit mine planning activities to enable more prescriptive blast designs to achieve improved loading and hauling and downstream process efficiency. Better and more accurate blast practice that delivers enhanced outcomes(better fragmentation, improved diggability, less dilution, etc.) is a critical and fundamental element of being able to achieve an effective Mine-Mill approach at a mining operation. Based on previous work, it has been demonstrated that an accurate representation of the rock mass properties can be obtained from the analysis of variations in blasthole drill performance as derived from measurement while drilling(MWD) systems when using tricone bits. This paper further investigates how monitored rate of penetration,pulldown force, rotary torque, rotary speed and bailing air pressure responses can be used to determine the presence of open and partially open fractures having varying dip angles. Based on a correlation of geophysically measured fracture logs and monitored drill performance variables in the same blastholes, the results show that the latter responses can accurately determine open versus closed fractures. The results also identified that variations in rate of penetration and rotary torque show the most sensitivity in the presence of open fractures that intersect a vertical blasthole at near orthogonal angles. 展开更多
关键词 Measurement WHILE drilling FRACTURES rotary blasthole drill drill performance VARIABLES Fracture frequency LOGGING
下载PDF
A LESO Based Backstepping Controller Considering Coal Seam Hardness for Rotary Speed in Coal Mine Tunnel Drilling Process
11
作者 CHEN Luefeng LIU Xiao +3 位作者 WU Min LU Chengda PEDRYCZ Witold HIROTA Kaoru 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第5期1789-1808,共20页
In the process of coal mine drilling,controlling the rotary speed is important as it determines the efficiency and safety of drilling.In this paper,a linear extended state observer(LESO)based backstepping controller f... In the process of coal mine drilling,controlling the rotary speed is important as it determines the efficiency and safety of drilling.In this paper,a linear extended state observer(LESO)based backstepping controller for rotary speed is proposed,which can overcome the impact of changes in coal seam hardness on rotary speed.Firstly,the influence of coal seam hardness on the drilling rig’s rotary system is considered for the first time,which is reflected in the numerical variation of load torque,and a dynamic model for the design of rotary speed controller is established.Then an LESO is designed to observe the load torque,and feedforward compensation is carried out to overcome the influence of coal seam hardness.Based on the model of the compensated system,a backstepping method is used to design a controller to achieve tracking control of the rotary speed.Finally,the effectiveness of the controller designed in this paper is demonstrated through simulation and field experiments,the steady-state error of the rotary speed in field is 1 r/min,and the overshoot is reduced to 5.8%.This greatly improves the stability and security,which is exactly what the drilling process requires. 展开更多
关键词 BACKSTEPPING extended state observer hydraulic tunnel drilling machine rotary speed
原文传递
Enhancing diamond drilling performance by the addition of non-ionic polymer to the flushing media 被引量:2
12
作者 BHATNAGAR Anupam KHANDELWAL Manoj RAO Karanam Uma Maheshwar 《Mining Science and Technology》 EI CAS 2010年第3期400-405,共6页
Drilling is a most important and crucial operation in the excavation industries.With the objective of looking into the enhancement of diamond drilling performance detailed laboratory investigations were carried out on... Drilling is a most important and crucial operation in the excavation industries.With the objective of looking into the enhancement of diamond drilling performance detailed laboratory investigations were carried out on phosphate rock.The effect of Poly(Ethylene Oxide)(PEO) added to the drilling water was studied by varying machine parameters and PEO concentration.The responses were rate of penetration and torque at the bit rock interface.Slake durability tests were also performed to understand the slaking behavior of phosphate rock in PEO solutions. 展开更多
关键词 rotary diamond drilling flushing media polyethylene oxide rate of penetration TORQUE zero surface charge drilling
下载PDF
Processing of measurement while drilling data for rock mass characterization 被引量:4
13
作者 Babaei Khorzoughi Mohammad Hall Robert 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期989-994,共6页
The information extracted from monitoring of rotary blasthole drills helps to optimize the overall mining operation. Rock hardness, drillability, blastability and specific energy of drilling are examples of parameters... The information extracted from monitoring of rotary blasthole drills helps to optimize the overall mining operation. Rock hardness, drillability, blastability and specific energy of drilling are examples of parameters that have been estimated in the past using measurement while drilling techniques. In order to be able to properly utilize measurement while drilling techniques, it is important to properly collect, analyze and interpret extracted data. This paper deals with processing of measurement while drilling data such as rate of penetration, rotary speed, rotary torque and pulldown force collected from rotary blasthole drills.Different methods are discussed to calculate a true rate of penetration which is the most important monitored drill variable for use in rock mass characterization. Then specific energy of drilling is defined and calculated based on electrical and mechanical inputs and the results are compared. The results show that specific energy of drilling can be estimated using the drill's primary drive systems' electrical responses with good accuracy when compared to values based on mechanical inputs. 展开更多
关键词 Measurement while drilling rotary blasthole drill Specific energy Rate of penetration
下载PDF
Instrumented borehole drilling for interface identification in intricate weathered granite ground engineering 被引量:1
14
作者 Zhuoying Tan Meifeng Cai +2 位作者 Z.Q. Yue L.G Tham C.F. Lee 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期195-199,共5页
The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology forma... The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%. 展开更多
关键词 drilling process monitoring rotary-hydraulic drilling intricate weathered granite FOUNDATION
下载PDF
A novel experimental system for performance evaluation of water powered percussive rock drill
15
作者 李夕兵 李志国 +1 位作者 周梓荣 刘希灵 《Journal of Central South University》 SCIE EI CAS 2011年第6期1902-1909,共8页
A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, e... A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, electronic control system, test and data acquisition system, and assistant devices, such as guideway and drilling bench. Parameters of the water powered percussive rock drill can be obtained by analyzing testing data, which contain impact energy, front and back cavity pressure, pressure and flow in each working part, drilling velocity, frequency and energy efficiency etc. The system is applied to test the self-designed water powered percussive rock drill SYYG65. The parameters of water powered percussive rock drill with impact pressure of about 8.9 MPa are 58.93 J for impact energy, and 8.97% for energy efficiency, which prove the effectiveness of system. 展开更多
关键词 water powered percussive rock drill performance test water powered excavation comprehensive evaluation
下载PDF
Application of Frequency Control Technique to a Rotary Drill
16
作者 YAO Can-yang 《International Journal of Plant Engineering and Management》 2009年第1期38-42,共5页
The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-d... The scheme of a frequency control system in a rotary drill is established by integrating a converter and a programmable logic controller ( PLC ). The principle of speed regulation, characters of speed-up and speed-down, and the mechanical running performance are also analyzed. The result of application indicates that the frequency control system excellently solves the problems of start, stop, and speed regulation of the drill. The equipment maintenance workload and cost are thus reduced. 展开更多
关键词 rotary drill frequency control PLC MOTOR
下载PDF
冲击破岩钻井提速技术研究现状与发展建议 被引量:3
17
作者 李根生 穆总结 +2 位作者 田守嶒 黄中伟 孙照伟 《新疆石油天然气》 CAS 2024年第1期1-12,共12页
提高钻井速度不仅是提高我国油气效益开发及深地勘探等方面的重要技术手段,同时对保障国家能源安全意义重大。冲击破岩钻井技术在国内外油田现场应用并获得了良好的提速效果,持续开展此类技术攻关有望攻克当下我国深地高温高压硬岩地层... 提高钻井速度不仅是提高我国油气效益开发及深地勘探等方面的重要技术手段,同时对保障国家能源安全意义重大。冲击破岩钻井技术在国内外油田现场应用并获得了良好的提速效果,持续开展此类技术攻关有望攻克当下我国深地高温高压硬岩地层进尺低、提速难的技术痛点。介绍和分析了轴向冲击、扭力冲击和轴-扭耦合冲击辅助钻头破岩钻进技术方面的实践及发展动态。结合冲击破岩钻井技术现状,阐明了冲击辅助钻头破岩力学原理是冲击破岩钻井提速技术的关键问题,综述了国内外研究学者在冲击辅助钻头破岩物理实验、理论模型和数值模拟等研究方法上取得的科学进展。针对冲击破岩钻井提速技术的发展提出了相关建议,即加强在材料结构优化设计、智能化控制、多元技术融合和井场应用优化等方面的研究力度,为我国能源高效开发做出贡献。 展开更多
关键词 钻井 提速 冲击钻井 技术现状 破岩原理 发展建议
下载PDF
钻井利器的故事之“液动潜孔锤”
18
作者 王跃伟 王文 +5 位作者 刘治 梁健 高鹏举 薛倩冰 齐力强 梁楠 《钻探工程》 2024年第5期169-175,共7页
在各种钻探方法中,液动冲击回转钻进具有效率高、质量好、回次长、事故少、成本低等优点,而液动潜孔锤又是液动冲击回转钻进的技术核心。本文梳理了各种液动潜孔锤的结构特点及其与绳索取心钻具、孔底动力钻具相结合衍生的各种钻具,简... 在各种钻探方法中,液动冲击回转钻进具有效率高、质量好、回次长、事故少、成本低等优点,而液动潜孔锤又是液动冲击回转钻进的技术核心。本文梳理了各种液动潜孔锤的结构特点及其与绳索取心钻具、孔底动力钻具相结合衍生的各种钻具,简要介绍了这一技术的典型应用案例,总结归纳了其下一步发展方向和技术难点,以期普及液动锤的应用,促进液动冲击回转钻进技术的进步。 展开更多
关键词 地质勘探 岩心钻探 冲击回转钻进 液动潜孔锤 绳索取心液动锤
下载PDF
四川盆地深层页岩气钻井关键技术新进展及发展展望 被引量:1
19
作者 佘朝毅 《天然气工业》 EI CAS CSCD 北大核心 2024年第3期1-9,I0001,共10页
四川盆地页岩气资源丰富,目前深层页岩气已成为该盆地天然气增储上产的重点领域,但随着埋深增加和构造背景变化,地质工程条件将更加复杂,钻井过程中将面临井漏风险高、井下工具高温易失效、水平井轨迹控制难度大等技术难题。为此,在系... 四川盆地页岩气资源丰富,目前深层页岩气已成为该盆地天然气增储上产的重点领域,但随着埋深增加和构造背景变化,地质工程条件将更加复杂,钻井过程中将面临井漏风险高、井下工具高温易失效、水平井轨迹控制难度大等技术难题。为此,在系统分析已完钻井实钻数据的基础上,依据深层页岩气区块地质工程特征,系统梳理了影响安全优快钻井的关键技术难点,形成了以地质工程一体化导向技术、钻井提速技术、防漏治漏与复杂防治技术为主体的深层页岩气安全优快钻井关键技术系列。研究结果表明:(1)以精细地质建模优选地质工程“双甜点”、实时靶体追踪为主的地质工程一体化导向技术,实现了地质目标的精准优选和精确追踪;(2)以“高效PDC钻头选型+个性化优化+大扭矩螺杆”高效破岩技术、“MSE+CCS”参数实时优化技术、油基钻井液地面降温+高温旋转导向技术为主的钻井提速技术,实现了页岩气钻井提速提效;(3)以井壁稳定性评价、裂缝性漏层识别、井漏与复杂防治为主的复杂防治技术,从源头降低了井下漏失和卡钻风险。结论认为:(1)形成的深层页岩气安全优快钻井技术,显著提高了机械钻速和铂金靶体钻遇率,在现场规模化推广应用200余口井,单井平均钻井周期降低42.7%,钻井提速效果显著,有力支撑了深层页岩气效益规模开发;(2)深层页岩气钻井将聚焦“地质工程一体化、水平段一趟钻、防漏治漏及智能钻井决策”等方面的技术攻关。 展开更多
关键词 深层页岩气 下志留统龙马溪组 地质工程一体化 钻井提速 高温旋转导向 钻井周期
下载PDF
冲旋步进钻井提速方法的井底裂纹拓展特性
20
作者 刘永旺 刘嘉雄 +3 位作者 管志川 王华健 赵国山 张曙辉 《石油机械》 北大核心 2024年第7期45-53,106,共10页
针对深部地层井底岩石硬度高、强度大和应力集中现象导致的岩石可钻性差、破岩效率低和使用寿命短的问题,提出旋冲钻井和差压步进破岩方法相结合的冲旋步进钻井提速新理念。为了研究冲击作用下差压步进钻头破碎地层岩石的裂纹拓展规律,... 针对深部地层井底岩石硬度高、强度大和应力集中现象导致的岩石可钻性差、破岩效率低和使用寿命短的问题,提出旋冲钻井和差压步进破岩方法相结合的冲旋步进钻井提速新理念。为了研究冲击作用下差压步进钻头破碎地层岩石的裂纹拓展规律,采用有限-离散元(FDEM)方法建立了球齿冲击三维薄板模型,开展了球齿在不同冲击能量、冲击位置及岩石种类等条件下的冲击破岩过程模拟,获得了阶梯型井底岩石在冲击作用下的裂纹扩展规律。研究结果表明:由于阶梯面的存在,球齿在冲击作用下对阶梯型井底造成的预损伤区域比常规井底更大,冲击位置靠近阶梯面的裂纹扩展效果更好;双球齿冲击阶梯井底容易形成较大范围的岩石破碎区,降低了破碎阶梯井底地层岩石的难度;球齿冲击过程中对青砂岩造成的预损伤区域比花岗岩大,在冲击能量相同的情况下球齿冲击破碎花岗岩更为困难。利用冲旋步进钻井方法理论上可以进一步提高难钻地层钻井速度,但具体效果需要经现场试验及优化。所得结论可为深部难钻地层钻井速度的提升提供新的思路。 展开更多
关键词 冲旋步进钻井方法 阶梯井底 差压步进钻头 有限-离散元耦合 裂纹扩展
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部