In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the bas...In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.展开更多
Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters inclu...Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.展开更多
Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),...Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.展开更多
Pollution involving pharmaceutical components in bodies of water is an increasingly serious environmental issue.Plasma discharge for the degradation of antibiotics is an emerging technology that may be relevant toward...Pollution involving pharmaceutical components in bodies of water is an increasingly serious environmental issue.Plasma discharge for the degradation of antibiotics is an emerging technology that may be relevant toward addressing this issue.In this work,a plasma-assisted rotating disk reactor(plasma-RDR)and a photocatalyst—namely,titanium dioxide(TiO_(2))—were coupled for the treatment of metronidazole(MNZ).Discharge uniformity was improved by the use of a rotating electrode in the plasma-RDR,which contributed to the utilization of ultraviolet(UV)light radiation in the presence of TiO_(2).The experimental results showed that the degradation efficiency of MNZ and the concentration of generated hydroxyl radicals respectively increased by 41%and 2.954 mg∙L^(-1) as the rotational speed increased from 0 to 500 r∙min^(-1).The synergistic effect of plasma-RDR plus TiO_(2) on the generation of hydroxyl radicals was evaluated.Major intermediate products were identified using three-dimensional(3D)excitation emission fluorescence matrices(EEFMs)and liquid chromatography-mass spectrometry(LC-MS),and a possible degradation pathway is proposed herein.This plasma-catalytic process has bright prospects in the field of antibiotics degradation.展开更多
The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to ...The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.展开更多
A simulation model is presented for the creep process of the rotating disks under the radial pressure in the presence of body forces. The finite strain theory is applied. The material is described by the Norton-Bailey...A simulation model is presented for the creep process of the rotating disks under the radial pressure in the presence of body forces. The finite strain theory is applied. The material is described by the Norton-Bailey law generalized for true stresses and logarithmic strains. A mathematical model is formulated in the form of a set of four partial differential equations with respect to the radial coordinate and time. Necessary initial and boundary conditions are also given. To make the model complete, a numerical procedure is proposed. The given example shows the effectiveness of this procedure. The results show that the classical finite element method cannot be used here because both the geometry and the loading (body forces) change with the time in the creep process, and the finite elements need to be redefined at each time step.展开更多
The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was s...The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.展开更多
The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. Th...The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.展开更多
The equations describing the flow of a viscoplastic fluid on a rotating disk are de-rived and are solved by perturbation technique and nurmerical computation respectivelyfor 2 cases. This makes it possible to calculat...The equations describing the flow of a viscoplastic fluid on a rotating disk are de-rived and are solved by perturbation technique and nurmerical computation respectivelyfor 2 cases. This makes it possible to calculate the thickness distribution of film. Twokinds of distribution of thickness have been found. For the viscoplastic fluid for whichboth viscosity and yield stress are independent of radial coordinate r, the thickness hdecreases with increasing r. For a Bingham fluid for which both viscosity and yieldstress are function of time and r. the thickness h increases with increasing r.展开更多
Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow devel...Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow develops in the radial clearance between the disk tip and the side wall of the casing as well as in the axial clearance between the disk surfaces and the stationary circular end walls of the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we compared the flows developing in the fields with small, medium and large axial clearances at the Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices emerge around the disk tip. The axial position of these small vortices is near the end wall or the axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow is not permanent but transitory, and a polygonal flow with larger several vortices appears. With further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator disk flows with no radial clearance. The spiral structures in the present study are formed by the disturbances that are driven by a centrifugal instability in the radial clearance and they are penetrated radially inward along the circular end walls of the casing.展开更多
In previous studies, the effects of radial clearance on the flow of a rotating disk in a cylindrical vessel have been investigated by using rotating disks of different shapes. As a result, different flow phases were o...In previous studies, the effects of radial clearance on the flow of a rotating disk in a cylindrical vessel have been investigated by using rotating disks of different shapes. As a result, different flow phases were observed in each disk due to the difference in disk dimensions. In this study, we focus on the end-face effect and conduct experiments to visualize the vortex growth process and elucidate the generation mechanism of the vortex structure. From the experiment results, at Re = 4000, 7000, and 9000, four types of vortex flow modes appeared in the vortex development process. However, at Re = 4000, only regular 2-cells and regular 4-cells appeared, and at Re = 9000, only mutated 2-cells and mutated 3-cells appeared. In addition, it was found that only one type appeared depending on the rotational ascent time t<sub>s</sub>. When Re = 4000, the rotational ascent time t<sub>s</sub> = 0, 2, 7, and 8 was stable at regular 4-cells, while the others were finally stable in regular 2-cells. This study revealed the influence of the acceleration of the rotating disk on the non-unique flows in the cylindrical casing.展开更多
A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temp...A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order(RKF45)integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction.展开更多
In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical sit...In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical situations,the motile microorganisms are incorporated too.The multiple slip effects are considered in the boundary conditions.The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation.The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers,biosensors,fuel cells,petroleum engineering,and the natural environment.By deploying some suitable similarity transformation functions,the governing partial differential equations(PDEs)of the flow problem are rehabilitated into dimensionless forms.The accomplished ordinary differential equations(ODEs)are solved numerically through the bvp4c scheme via a built-in function in computational MATLAB software.The upshots of some prominent physical and bioconvection parameters including wall slip parameters,thermophoresis parameter,Brownian motion parameter,Reiner–Revlin nanofluid parameter,Prandtl number,Peclet number,Lewis number,bioconvection Lewis number,and the mixed convection parameter against velocity,temperature,nanoparticles concentration,and density of motile microorganism profiles are dichotomized and pondered through graphs and tables.The presented computations show that the velocity profiles are de-escalated by the wall slip parameters while the thermal and solutal fields are upgraded with augmentation in thermophoresis number and wall slip parameters.The presence of thermal radiation enhances the temperature profile of nanofluid.The concentration profile of nanoparticles is boosted by intensification in activation energy.Furthermore,the increasing values of bioconvection Lewis number and Peclet number decay the motile microorganisms’field.展开更多
The separation of rare earths is difficult due to their similar properties and the complex characteristics of associated vein o res.Complexation-ultrafiltration(CUF)and shear induced o rderly dissociation coupling wit...The separation of rare earths is difficult due to their similar properties and the complex characteristics of associated vein o res.Complexation-ultrafiltration(CUF)and shear induced o rderly dissociation coupling with ultrafiltration(SIODUF)were used to separate metal ions(M,M=La(Ⅲ),Ce(Ⅳ)and Ca(Ⅱ))from simulated bastnaesite leaching solution using acidic phosphonic chitosan(aPCS)and rotating disk membrane.Effect of simultaneous removal of metallic ions was investigated by CUF,and suitable conditions were obtained for C/M 10.0(mass ratio of complexant to metal ions)and pH 5.0.The shear stabilities of aPCS-M complexes were explored at different pH values and the results show that the complexes can dissociate at a certain rotational speed,the critical one.The critical s hear rates of aPCS-La,aPCS-Ce and aPCS-Ca complexes at pH 5.0 were calculated as 1.42×10^(5).1.69×10^(5) and 9.75×10^(4) s^(-1),respectively.The order of complexes shear stability is aPCS-Ca aPCS-La<aPCS-Ce.The high selective separation of M and regeneration of aPCS were achieved by SIODUF in the light of the difference of aPCSM complexes shear stabilities.The separation coefficientsβLa/Ce andβCa/La reach 31.2 and 53.9,respectively.展开更多
In this study,we have analyzedfluid mobility and thermal transport of the SiO2/kerosene nanofluid within two rotating stretchable disks.The top disk is simulated to be oscil-lating with a periodic velocity and squeezi...In this study,we have analyzedfluid mobility and thermal transport of the SiO2/kerosene nanofluid within two rotating stretchable disks.The top disk is simulated to be oscil-lating with a periodic velocity and squeezing continuously the nanofluid within a porous me-dium and making thefluid toflow perpendicularly to the situated magneticfield.Thermal radiation effects are considered in the heat transfer model.The non-linear(NL)PDEs that describe the nanofluid mobility structure and thermal transport are transformed into system of NL-ODEs by introducing adequately suitable non-dimensional variables after which the NL-ODEs were numerically solved via spectral quasi-linearization method(SQLM)on over-lapping grids.The consequences of several pertinent parameters of the model on pressure,tem-perature,velocity,skin drag coefficient and thermal transport rate are examined and elucidated in detail with the aid offigures and tables.It was found that theflow structure with prescribing conditions develops negative pressure situation which has vast applications in modern day medical engineering,especially in the construction of air pressure stabilizers used in medical isolation and wound therapy physiology.展开更多
The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic ...The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.展开更多
The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffu...The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.展开更多
This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing eq...This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing equations are reduced by Von Karman transformation and then solved by the homotopy analysis method(HAM),which is in close agreement with numerical results.Results indicate that with increasing in stretching strength parameter,the skin friction and the local Nusselt number,the velocity in radial and axial directions increase,whereas the velocity in tangential direction and the thermal boundary'layer thickness decrease,respectively.Moreover,the effects of volume fraction and types of nanofluids on velocity and temperature fields are also analyzed.展开更多
Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comp...Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature.展开更多
The paper presents results of simulation of turbulent heat transfer and hydrodynamics over a free rotating disk using an integral method based on power-law velocity and temperature profiles and three different laws fo...The paper presents results of simulation of turbulent heat transfer and hydrodynamics over a free rotating disk using an integral method based on power-law velocity and temperature profiles and three different laws for the tangent of the flow swirl angle tan. It appeared that a quadratic correlation of tan is the most proper one for a free rotating disk. Resulting equation for the Nusselt number is in a better agreement with experimental data of different authors than known Dorfman formula.展开更多
文摘In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.
文摘Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.
基金Project(21476265)supported by the National Natural Science Foundation of China。
文摘Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA.
基金This work was supported by the National Natural Science Foundation of China(21725601).
文摘Pollution involving pharmaceutical components in bodies of water is an increasingly serious environmental issue.Plasma discharge for the degradation of antibiotics is an emerging technology that may be relevant toward addressing this issue.In this work,a plasma-assisted rotating disk reactor(plasma-RDR)and a photocatalyst—namely,titanium dioxide(TiO_(2))—were coupled for the treatment of metronidazole(MNZ).Discharge uniformity was improved by the use of a rotating electrode in the plasma-RDR,which contributed to the utilization of ultraviolet(UV)light radiation in the presence of TiO_(2).The experimental results showed that the degradation efficiency of MNZ and the concentration of generated hydroxyl radicals respectively increased by 41%and 2.954 mg∙L^(-1) as the rotational speed increased from 0 to 500 r∙min^(-1).The synergistic effect of plasma-RDR plus TiO_(2) on the generation of hydroxyl radicals was evaluated.Major intermediate products were identified using three-dimensional(3D)excitation emission fluorescence matrices(EEFMs)and liquid chromatography-mass spectrometry(LC-MS),and a possible degradation pathway is proposed herein.This plasma-catalytic process has bright prospects in the field of antibiotics degradation.
文摘The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse vibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non collocated. The results obtained by all sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non collocated.
文摘A simulation model is presented for the creep process of the rotating disks under the radial pressure in the presence of body forces. The finite strain theory is applied. The material is described by the Norton-Bailey law generalized for true stresses and logarithmic strains. A mathematical model is formulated in the form of a set of four partial differential equations with respect to the radial coordinate and time. Necessary initial and boundary conditions are also given. To make the model complete, a numerical procedure is proposed. The given example shows the effectiveness of this procedure. The results show that the classical finite element method cannot be used here because both the geometry and the loading (body forces) change with the time in the creep process, and the finite elements need to be redefined at each time step.
文摘The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.
文摘The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.
文摘The equations describing the flow of a viscoplastic fluid on a rotating disk are de-rived and are solved by perturbation technique and nurmerical computation respectivelyfor 2 cases. This makes it possible to calculate the thickness distribution of film. Twokinds of distribution of thickness have been found. For the viscoplastic fluid for whichboth viscosity and yield stress are independent of radial coordinate r, the thickness hdecreases with increasing r. For a Bingham fluid for which both viscosity and yieldstress are function of time and r. the thickness h increases with increasing r.
文摘Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow develops in the radial clearance between the disk tip and the side wall of the casing as well as in the axial clearance between the disk surfaces and the stationary circular end walls of the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we compared the flows developing in the fields with small, medium and large axial clearances at the Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices emerge around the disk tip. The axial position of these small vortices is near the end wall or the axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow is not permanent but transitory, and a polygonal flow with larger several vortices appears. With further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator disk flows with no radial clearance. The spiral structures in the present study are formed by the disturbances that are driven by a centrifugal instability in the radial clearance and they are penetrated radially inward along the circular end walls of the casing.
文摘In previous studies, the effects of radial clearance on the flow of a rotating disk in a cylindrical vessel have been investigated by using rotating disks of different shapes. As a result, different flow phases were observed in each disk due to the difference in disk dimensions. In this study, we focus on the end-face effect and conduct experiments to visualize the vortex growth process and elucidate the generation mechanism of the vortex structure. From the experiment results, at Re = 4000, 7000, and 9000, four types of vortex flow modes appeared in the vortex development process. However, at Re = 4000, only regular 2-cells and regular 4-cells appeared, and at Re = 9000, only mutated 2-cells and mutated 3-cells appeared. In addition, it was found that only one type appeared depending on the rotational ascent time t<sub>s</sub>. When Re = 4000, the rotational ascent time t<sub>s</sub> = 0, 2, 7, and 8 was stable at regular 4-cells, while the others were finally stable in regular 2-cells. This study revealed the influence of the acceleration of the rotating disk on the non-unique flows in the cylindrical casing.
文摘A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order(RKF45)integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction.
基金supported by the Government College University,Faisalabad,and Higher Education Commission,Pakistan.
文摘In current study,the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered.For innovative physical situations,the motile microorganisms are incorporated too.The multiple slip effects are considered in the boundary conditions.The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation.The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers,biosensors,fuel cells,petroleum engineering,and the natural environment.By deploying some suitable similarity transformation functions,the governing partial differential equations(PDEs)of the flow problem are rehabilitated into dimensionless forms.The accomplished ordinary differential equations(ODEs)are solved numerically through the bvp4c scheme via a built-in function in computational MATLAB software.The upshots of some prominent physical and bioconvection parameters including wall slip parameters,thermophoresis parameter,Brownian motion parameter,Reiner–Revlin nanofluid parameter,Prandtl number,Peclet number,Lewis number,bioconvection Lewis number,and the mixed convection parameter against velocity,temperature,nanoparticles concentration,and density of motile microorganism profiles are dichotomized and pondered through graphs and tables.The presented computations show that the velocity profiles are de-escalated by the wall slip parameters while the thermal and solutal fields are upgraded with augmentation in thermophoresis number and wall slip parameters.The presence of thermal radiation enhances the temperature profile of nanofluid.The concentration profile of nanoparticles is boosted by intensification in activation energy.Furthermore,the increasing values of bioconvection Lewis number and Peclet number decay the motile microorganisms’field.
基金Project supported by the National Natural Science Foundation of China(22178392)the Fundamental Research Funds for the Central Universities of Central South University,China(2022ZZTS0493)。
文摘The separation of rare earths is difficult due to their similar properties and the complex characteristics of associated vein o res.Complexation-ultrafiltration(CUF)and shear induced o rderly dissociation coupling with ultrafiltration(SIODUF)were used to separate metal ions(M,M=La(Ⅲ),Ce(Ⅳ)and Ca(Ⅱ))from simulated bastnaesite leaching solution using acidic phosphonic chitosan(aPCS)and rotating disk membrane.Effect of simultaneous removal of metallic ions was investigated by CUF,and suitable conditions were obtained for C/M 10.0(mass ratio of complexant to metal ions)and pH 5.0.The shear stabilities of aPCS-M complexes were explored at different pH values and the results show that the complexes can dissociate at a certain rotational speed,the critical one.The critical s hear rates of aPCS-La,aPCS-Ce and aPCS-Ca complexes at pH 5.0 were calculated as 1.42×10^(5).1.69×10^(5) and 9.75×10^(4) s^(-1),respectively.The order of complexes shear stability is aPCS-Ca aPCS-La<aPCS-Ce.The high selective separation of M and regeneration of aPCS were achieved by SIODUF in the light of the difference of aPCSM complexes shear stabilities.The separation coefficientsβLa/Ce andβCa/La reach 31.2 and 53.9,respectively.
文摘In this study,we have analyzedfluid mobility and thermal transport of the SiO2/kerosene nanofluid within two rotating stretchable disks.The top disk is simulated to be oscil-lating with a periodic velocity and squeezing continuously the nanofluid within a porous me-dium and making thefluid toflow perpendicularly to the situated magneticfield.Thermal radiation effects are considered in the heat transfer model.The non-linear(NL)PDEs that describe the nanofluid mobility structure and thermal transport are transformed into system of NL-ODEs by introducing adequately suitable non-dimensional variables after which the NL-ODEs were numerically solved via spectral quasi-linearization method(SQLM)on over-lapping grids.The consequences of several pertinent parameters of the model on pressure,tem-perature,velocity,skin drag coefficient and thermal transport rate are examined and elucidated in detail with the aid offigures and tables.It was found that theflow structure with prescribing conditions develops negative pressure situation which has vast applications in modern day medical engineering,especially in the construction of air pressure stabilizers used in medical isolation and wound therapy physiology.
基金supported by the National Natural Science Foundation of China(No.11972144)the Shanxi Province Specialized Research and Development Breakthrough in Key Core and Generic Technologies(Key Research and Development Program)(No.2020XXX017)the Fundamental Research Program of Shanxi Province of China(No.202203021211134)。
文摘The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries.
文摘The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.
基金supported by National Natural Science Foundations of China(Nos.51276014,51476191).
文摘This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing equations are reduced by Von Karman transformation and then solved by the homotopy analysis method(HAM),which is in close agreement with numerical results.Results indicate that with increasing in stretching strength parameter,the skin friction and the local Nusselt number,the velocity in radial and axial directions increase,whereas the velocity in tangential direction and the thermal boundary'layer thickness decrease,respectively.Moreover,the effects of volume fraction and types of nanofluids on velocity and temperature fields are also analyzed.
文摘Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature.
文摘The paper presents results of simulation of turbulent heat transfer and hydrodynamics over a free rotating disk using an integral method based on power-law velocity and temperature profiles and three different laws for the tangent of the flow swirl angle tan. It appeared that a quadratic correlation of tan is the most proper one for a free rotating disk. Resulting equation for the Nusselt number is in a better agreement with experimental data of different authors than known Dorfman formula.