期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of power supply parameters on discharge characteristics and sterilization efficiency of magnetically driven rotating gliding arc
1
作者 Shaohua QIN Meizhi WANG +2 位作者 Jun DU Lanlan NIE Jie PAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期61-68,共8页
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi... Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device. 展开更多
关键词 PLASMA magnetically driven rotating gliding arc STERILIZATION
下载PDF
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas 被引量:2
2
作者 张浩 朱凤森 +3 位作者 屠昕 薄拯 岑可法 李晓东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第5期473-477,共5页
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas ... In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. 展开更多
关键词 rotating gliding arc (RGA) gas flow rate optical emission spectroscopy motion behavior electrical characteristics
下载PDF
Dynamic behavior of a rotating gliding arc plasma in nitrogen:effects of gas flow rate and operating current 被引量:1
3
作者 张浩 朱凤森 +1 位作者 李晓东 杜长明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第4期42-47,共6页
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigate... The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage. 展开更多
关键词 rotating gliding arc (RGA) electrical characteristics gas flow rate operating current rotation mode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部