This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform...This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform,linear and nonlinear temperature distributions across the thickness are investigated.Thermo-elastic properties of FG beam change gradually according to the Mori–Tanaka distribution model in the spatial coordinate.The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function.The governing equations are derived by Hamilton’s principle as a function of axial force due to centrifugal stiffening and displacement.The solution of these equations is provided employing a Galerkin-based approach which has the potential to capture various boundary conditions.By applying an analytical solution and solving an eigenvalue problem,the dispersion relations of rotating FG nanobeam are obtained.Numerical results illustrate that various parameters including temperature change,angular velocity,nonlocality parameter,wave number and gradient index have significant effects on the wave dispersion characteristics of the nanobeam under study.The outcome of this study can provide beneficial information for the next-generation research and the exact design of nano-machines including nanoscale molecular bearings,nanogears,etc.展开更多
In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorp...In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorporated symmetric part of the velocity gradient tensor (as done in classical theories) as well as skew symmetric part representing varying internal rotation rates between material points which when resisted by deforming continua result in dissipation (and/or storage) of mechanical work. This physics referred as internal polar physics is neglected in classical continuum theories but can be quite significant for some materials. In another recent paper Surana et al. presented ordered rate constitutive theories for internal polar non-classical fluent continua without memory derived using deviatoric Cauchy stress tensor and conjugate strain rate tensors of up to orders n and Cauchy moment tensor and its conjugate symmetric part of the first convected derivative of the rotation gradient tensor. In this constitutive theory higher order convected derivatives of the symmetric part of the rotation gradient tensor are assumed not to contribute to dissipation. Secondly, the skew symmetric part of the velocity gradient tensor is used as rotation rates to determine rate of rotation gradient tensor. This is an approximation to true convected time derivatives of the rotation gradient tensor. The resulting constitutive theory: (1) is incomplete as it neglects the second and higher order convected time derivatives of the symmetric part of the rotation gradient tensor;(2) first convected derivative of the symmetric part of the rotation gradient tensor as used by Surana et al. is only approximate;(3) has inconsistent treatment of dissipation due to Cauchy moment tensor when compared with the dissipation mechanism due to deviatoric part of symmetric Cauchy stress tensor in which convected time derivatives of up to order n are considered in the theory. The purpose of this paper is to present ordered rate constitutive theories for deviatoric Cauchy strain tensor, moment tensor and heat vector for thermofluids without memory in which convected time derivatives of strain tensors up to order n are conjugate with the Cauchy stress tensor and the convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n are conjugate with the moment tensor. Conservation and balance laws are used to determine the choice of dependent variables in the constitutive theories: Helmholtz free energy density Φ, entropy density η, Cauchy stress tensor, moment tensor and heat vector. Stress tensor is decomposed into symmetric and skew symmetric parts and the symmetric part of the stress tensor and the moment tensor are further decomposed into equilibrium and deviatoric tensors. It is established through conjugate pairs in entropy inequality that the constitutive theories only need to be derived for symmetric stress tensor, moment tensor and heat vector. Density in the current configuration, convected time derivatives of the strain tensor up to order n, convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n, temperature gradient tensor and temperature are considered as argument tensors of all dependent variables in the constitutive theories based on entropy inequality and principle of equipresence. The constitutive theories are derived in contravariant and covariant bases as well as using Jaumann rates. The nth and 1nth order rate constitutive theories for internal polar non-classical thermofluids without memory are specialized for n = 1 and 1n = 1 to demonstrate fundamental differences in the constitutive theories presented here and those used presently for classical thermofluids without memory and those published by Surana et al. for internal polar non-classical incompressible thermofluids.展开更多
文摘This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform,linear and nonlinear temperature distributions across the thickness are investigated.Thermo-elastic properties of FG beam change gradually according to the Mori–Tanaka distribution model in the spatial coordinate.The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function.The governing equations are derived by Hamilton’s principle as a function of axial force due to centrifugal stiffening and displacement.The solution of these equations is provided employing a Galerkin-based approach which has the potential to capture various boundary conditions.By applying an analytical solution and solving an eigenvalue problem,the dispersion relations of rotating FG nanobeam are obtained.Numerical results illustrate that various parameters including temperature change,angular velocity,nonlocality parameter,wave number and gradient index have significant effects on the wave dispersion characteristics of the nanobeam under study.The outcome of this study can provide beneficial information for the next-generation research and the exact design of nano-machines including nanoscale molecular bearings,nanogears,etc.
文摘In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorporated symmetric part of the velocity gradient tensor (as done in classical theories) as well as skew symmetric part representing varying internal rotation rates between material points which when resisted by deforming continua result in dissipation (and/or storage) of mechanical work. This physics referred as internal polar physics is neglected in classical continuum theories but can be quite significant for some materials. In another recent paper Surana et al. presented ordered rate constitutive theories for internal polar non-classical fluent continua without memory derived using deviatoric Cauchy stress tensor and conjugate strain rate tensors of up to orders n and Cauchy moment tensor and its conjugate symmetric part of the first convected derivative of the rotation gradient tensor. In this constitutive theory higher order convected derivatives of the symmetric part of the rotation gradient tensor are assumed not to contribute to dissipation. Secondly, the skew symmetric part of the velocity gradient tensor is used as rotation rates to determine rate of rotation gradient tensor. This is an approximation to true convected time derivatives of the rotation gradient tensor. The resulting constitutive theory: (1) is incomplete as it neglects the second and higher order convected time derivatives of the symmetric part of the rotation gradient tensor;(2) first convected derivative of the symmetric part of the rotation gradient tensor as used by Surana et al. is only approximate;(3) has inconsistent treatment of dissipation due to Cauchy moment tensor when compared with the dissipation mechanism due to deviatoric part of symmetric Cauchy stress tensor in which convected time derivatives of up to order n are considered in the theory. The purpose of this paper is to present ordered rate constitutive theories for deviatoric Cauchy strain tensor, moment tensor and heat vector for thermofluids without memory in which convected time derivatives of strain tensors up to order n are conjugate with the Cauchy stress tensor and the convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n are conjugate with the moment tensor. Conservation and balance laws are used to determine the choice of dependent variables in the constitutive theories: Helmholtz free energy density Φ, entropy density η, Cauchy stress tensor, moment tensor and heat vector. Stress tensor is decomposed into symmetric and skew symmetric parts and the symmetric part of the stress tensor and the moment tensor are further decomposed into equilibrium and deviatoric tensors. It is established through conjugate pairs in entropy inequality that the constitutive theories only need to be derived for symmetric stress tensor, moment tensor and heat vector. Density in the current configuration, convected time derivatives of the strain tensor up to order n, convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n, temperature gradient tensor and temperature are considered as argument tensors of all dependent variables in the constitutive theories based on entropy inequality and principle of equipresence. The constitutive theories are derived in contravariant and covariant bases as well as using Jaumann rates. The nth and 1nth order rate constitutive theories for internal polar non-classical thermofluids without memory are specialized for n = 1 and 1n = 1 to demonstrate fundamental differences in the constitutive theories presented here and those used presently for classical thermofluids without memory and those published by Surana et al. for internal polar non-classical incompressible thermofluids.