In this paper, the intrinsic behavior of rotating Euler Benoulli flexible shafts was studied due to coupled bending and torsional vibrations. The equations of motion of the shaft with unbalanced eccentricity and visc...In this paper, the intrinsic behavior of rotating Euler Benoulli flexible shafts was studied due to coupled bending and torsional vibrations. The equations of motion of the shaft with unbalanced eccentricity and viscous material damping were derived by the Hamilton principle. The numerical solution was obtained using the perturbation approach and mode assuming method. The influences of the coupled vibrations between the bending and torsion, the rotating speed, material damping and the slenderness ratio of the shaft were analyzed. It is clearly shown that the beating phenomena can occur when the interaction of torsion and flexure is considered.展开更多
Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrati...Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.展开更多
A non-contact vibration sensor based on the fiber Bragg grating (FBG) sensor has been presented, and it is used to monitor the vibration of rotating shaft. In the paper, we describe the principle of the sensor and m...A non-contact vibration sensor based on the fiber Bragg grating (FBG) sensor has been presented, and it is used to monitor the vibration of rotating shaft. In the paper, we describe the principle of the sensor and make some experimental analyses. The analysis results show that the sensitivity and linearity of the sensor are -1.5pm/um and 4.11% within a measuring range of 2 mm- 2.6mm, respectively. When it is used to monitor the vibration of the rotating shaft, the analysis signals of vibration of the rotating shaft and the critical speed of rotation obtained are the same as that obtained from the eddy current sensor. It verifies that the sensor can be used for the non-contact measurement of vibration of the rotating shaft system and for fault monitoring and diagnosis of rotating machinery.展开更多
文摘In this paper, the intrinsic behavior of rotating Euler Benoulli flexible shafts was studied due to coupled bending and torsional vibrations. The equations of motion of the shaft with unbalanced eccentricity and viscous material damping were derived by the Hamilton principle. The numerical solution was obtained using the perturbation approach and mode assuming method. The influences of the coupled vibrations between the bending and torsion, the rotating speed, material damping and the slenderness ratio of the shaft were analyzed. It is clearly shown that the beating phenomena can occur when the interaction of torsion and flexure is considered.
基金supported by National Natural Science Foundation of China (No.50475112)National Hi-Tech Research and Development Program of China (863 Program,No.2006AA110112).
文摘Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.
文摘A non-contact vibration sensor based on the fiber Bragg grating (FBG) sensor has been presented, and it is used to monitor the vibration of rotating shaft. In the paper, we describe the principle of the sensor and make some experimental analyses. The analysis results show that the sensitivity and linearity of the sensor are -1.5pm/um and 4.11% within a measuring range of 2 mm- 2.6mm, respectively. When it is used to monitor the vibration of the rotating shaft, the analysis signals of vibration of the rotating shaft and the critical speed of rotation obtained are the same as that obtained from the eddy current sensor. It verifies that the sensor can be used for the non-contact measurement of vibration of the rotating shaft system and for fault monitoring and diagnosis of rotating machinery.