We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material(VGM). The dynamical behavior of the sphere is influenced by the external energy input fro...We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material(VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to ε,where ε is equal to the ratio between the square of the dimensionless acceleration Γ and the square of the vibration frequency f of the container. Empirical results reveal that as the VGM transits from local-to-global convection,an increase in ε generally corresponds to an increase in the magnitudes of the rotational ω(RS) and translational v(CM) velocities of the sphere, an increase in the observed tilting angle θ(bed) of the VGM bed, and a decrease in the time t(wall) it takes the sphere to roll down the tilted VGM bed and hit the container wall. During unstable convection, an increase in ε results in a sharp decrease in the sphere's peak and mean ω(RS),and a slight increase in t(wall).For the range of ε values covered in this study, the sphere may execute persistent rotation, wobbling or jamming, depending on the vibration parameters and the resulting convective flow in the system.展开更多
The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permea...The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell. The Brinkman's model for the flow inside the compos- ite sphere and the Stokes equation for the flow in the spheri- cal container were used to study the motion. The torque ex- perienced by the porous spherical particle in the presence of cavity is obtained. The wall correction factor is calculated. In the limiting cases, the analytical solution describing the torque for a porous sphere and for a solid sphere in an un- bounded medium are obtained from the present analysis.展开更多
The drag and lift forces acting on a rotational spherical particle in a logarithmic boundary flow are numerically studied. The effects of the drag velocity and rotational speed of the sphere on the drag force are exam...The drag and lift forces acting on a rotational spherical particle in a logarithmic boundary flow are numerically studied. The effects of the drag velocity and rotational speed of the sphere on the drag force are examined for the particle Reynolds number from 50 to 300 and for the dimensionless rotational angular speed of 0≤Ω≤1.0. The influence of dimensionless roughness height Z0 of the wall is also evaluated for z0 ≤ 10. The results show that the drag forces on a sphere both in a logarithmic flow and in a uniform unsheared flow increase with the increase of the drag velocity. For 50≤Rep≤300, -↑CD increases with decreased roughness height z0. The time-averaged drag coefficient is also significantly affected by rotational speed of the sphere and roughness height zo. The lift coefficient -↑CL increases with increased rotational speed and decreases with increased roughness height.展开更多
基金Supported by the CHED-FDP II Program of the Commission on Higher Education of the Philippines
文摘We investigate the rotational dynamics of a low-density sphere on the free surface of a vertically vibrated granular material(VGM). The dynamical behavior of the sphere is influenced by the external energy input from an electromagnetic shaker which is proportional to ε,where ε is equal to the ratio between the square of the dimensionless acceleration Γ and the square of the vibration frequency f of the container. Empirical results reveal that as the VGM transits from local-to-global convection,an increase in ε generally corresponds to an increase in the magnitudes of the rotational ω(RS) and translational v(CM) velocities of the sphere, an increase in the observed tilting angle θ(bed) of the VGM bed, and a decrease in the time t(wall) it takes the sphere to roll down the tilted VGM bed and hit the container wall. During unstable convection, an increase in ε results in a sharp decrease in the sphere's peak and mean ω(RS),and a slight increase in t(wall).For the range of ε values covered in this study, the sphere may execute persistent rotation, wobbling or jamming, depending on the vibration parameters and the resulting convective flow in the system.
文摘The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell. The Brinkman's model for the flow inside the compos- ite sphere and the Stokes equation for the flow in the spheri- cal container were used to study the motion. The torque ex- perienced by the porous spherical particle in the presence of cavity is obtained. The wall correction factor is calculated. In the limiting cases, the analytical solution describing the torque for a porous sphere and for a solid sphere in an un- bounded medium are obtained from the present analysis.
文摘The drag and lift forces acting on a rotational spherical particle in a logarithmic boundary flow are numerically studied. The effects of the drag velocity and rotational speed of the sphere on the drag force are examined for the particle Reynolds number from 50 to 300 and for the dimensionless rotational angular speed of 0≤Ω≤1.0. The influence of dimensionless roughness height Z0 of the wall is also evaluated for z0 ≤ 10. The results show that the drag forces on a sphere both in a logarithmic flow and in a uniform unsheared flow increase with the increase of the drag velocity. For 50≤Rep≤300, -↑CD increases with decreased roughness height z0. The time-averaged drag coefficient is also significantly affected by rotational speed of the sphere and roughness height zo. The lift coefficient -↑CL increases with increased rotational speed and decreases with increased roughness height.