The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati...The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene...The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.展开更多
It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel ...It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
Parallel mechanisms(PMs) having the same motion characteristic with a UP kinematic chain(U denotes a universal joint, and P denotes a prismatic joint) are called UP-equivalent PMs. They can be used in many application...Parallel mechanisms(PMs) having the same motion characteristic with a UP kinematic chain(U denotes a universal joint, and P denotes a prismatic joint) are called UP-equivalent PMs. They can be used in many applications, such as machining and milling. However, the existing UP-equivalent PMs suffer from the disadvantages of strict assembly requirements and limited rotational capability. Type synthesis of UP-equivalent PMs with high rotational capability is presented.The special 2 R1 T motion is briefly discussed and the fact that the parallel module of the Exechon robot is not a UP-equivalent PM is disclosed. Using the Lie group theory, the kinematic bonds of limb chains and their mechanical generators are presented. Structural conditions for constructing such UP-equivalent PMs are proposed,which results in numerous new architectures of UP-equivalent PMs. The high rotational capability of the synthesized mechanisms is illustrated by an example. The advantages of no strict assembly requirements and high rotational capability of the newly developed PMs will facilitate their applications in the manufacturing industry.展开更多
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I...Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.展开更多
A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press...A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.展开更多
The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is p...The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is proposed to establish the model of PMA.The concept of hybrid elastic modulus which is related to the static characteristic of PMA is put forward,and the energy conservation law is used to achieve the expression of the hybrid elastic modulus,which can be fitted out based on experimental data,and the model of PMA can be derived from this expression.At the same time,a 3-DOF parallel mechanism(a new bionic shoulder joint)driven by five PMAs is designed.This bionic shoulder joint adopts the structure of two antagonistic PMAs actualizing a rotation control and three PMAs controlling another two rotations to get better rotation characteristics.The kinematic and dynamic characteristics of the mechanism are analyzed and a new static model of PMA is used to control it.Experimental results demonstrate the effectiveness of this new static model.展开更多
Most parallel mechanisms(PMs) encountered today have a common disadvantage, i.e., their low rotational capability.In order to develop PMs with high rotational capability, a family of novel manipulators with one or two...Most parallel mechanisms(PMs) encountered today have a common disadvantage, i.e., their low rotational capability.In order to develop PMs with high rotational capability, a family of novel manipulators with one or two dimensional rotations is proposed. The planar one-rotational one-translational(1 R1 T) and one-rotational two-translational(1 R2 T)PMs evolved from the crank-and-rocker mechanism(CRM) are presented by means of Lie group theory. A spatial 2 R1 T PM and a 2 R parallel moving platform with bifurcated large-angle rotations are proposed by orthogonal combination of the RRRR limbs. According to the product principle of the displacement group theory, a hybrid 2 R3 T mechanism in possession of bifurcated motion is obtained by connecting the 2 R parallel moving platform with a parallel part, which is constructed by four 3 T1 R kinematic chains. The presented manipulators possess high rotational capability. The proposed research enriches the family of spatial mechanisms and the construction method provides an instruction to design more complex mechanisms.展开更多
The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only...The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only rotate around two axes in sequential order.It decreases the performance of the balancing adjustment of the end-efector.In this paper,a family of 2R1T PMs without parasitic motion was reconstructed by using a novel method based on the remarkable properties of rotational bifurcation mechanisms,which can rotate in sequential order.Furthermore,some PMs rotating around two continuous axes in an arbitrary order are established by adding single joints.Taking the practicability of these structures into consideration,the workspace of 3-PRPS PM was analyzed as an example.Moreover,this study explores the practical application of the PMs without parasitic motion in developing balance mechanisms in rough-terrain fre-fghting robots.During the climbing process,the tank is adjusted to be parallel to the horizontal plane in real-time.It is proved that this kind of structure realizes continuous rotation around two rotation axes on the premise of no parasitic motion.展开更多
By combining the artificial neural network with the rule reasoning expert system, an expert diagnosing system for a rotation mechanism was established. This expert system takes advantage of both a neural network and a...By combining the artificial neural network with the rule reasoning expert system, an expert diagnosing system for a rotation mechanism was established. This expert system takes advantage of both a neural network and a rule reasoning expert system; it can also make use of all kinds of knowledge in the repository to diagnose the fault with the positive and negative mixing reasoning mode. The binary system was adopted to denote all kinds of fault in a rotation mechanism. The neural networks were trained with a random parallel algorithm (Alopex). The expert system overcomes the self learning difficulty of the rule reasoning expert system and the shortcoming of poor system control of the neural network. The expert system developed in this paper has powerful diagnosing ability.展开更多
In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,diff...In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,different rotational speeds,and different states of air spring.Aiming at the problem that computing speed of Newton iterative method for solving rotational angle is incompetence to meet the real-time requirements,and also that other methods adopting physical device such as laser displacement sensor to solve rotational angle possess larger measurement error,the analytical techniques method used for solving rotational angle is presented.Finally,by using the upper-single-6-DOF motion platform as an authentic urging mean to simulate a real vehicle,the test was carried out under the speeds of 0.2 and 1.0(°)/s,with the air spring at the inflated and deflated states,respectively.The results showthat the RRC of the bogie under various conditions is less than 0.06,which meets the standard requirement EN-14363.It was also found that the speed of vehicles moving along curves and the state of air spring were key factors influencing the RRC.The feasibilities of this model and test method are verified in this study.展开更多
The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-fillete...The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-filleted flexure hinge flexibility formula by methods of symmetry transformation and coordinates translation. The correctness of this formula is validated on the basis of the finite element method and under the premise that the effects of shear stress are taken into consideration. Then a micro-rotation compliant mechanism is designed in accordance with the corner-filleted flexure hinge,and the deduction and analysis of its working moment/rigidity are conducted. Moreover,this theoretical formula is proved to be accurate and reliable through the finite element analysis and the experimental verification,based on which the structural design and optimization can be made on the rotating part of a micro adjustment device. The results illustrate that designing and optimizing the structures by the analysis model is convenient and reliable so that complicated 3D modeling and finite element analysis are not needed.展开更多
Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorie...Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in rnethanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and ro- tation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with rnethanol comparing to that with water, due to the steric effect of the rnethyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.展开更多
Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditio...Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.展开更多
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the...The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52225404)Beijing Outstanding Young Scientist Program (Grant No.BJJWZYJH01201911413037)Central University Excellent Youth Team Funding Project (Grant No.2023YQTD01).
文摘The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
文摘The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.
基金supported by National Natural Science Foundation of China (Grant No. 50875227)
文摘It is widely used for the rotational parallel mechanism in the field of spatial orientation. While owing to the existence of coupling, the forward kinematic solution and the control of the general rotational parallel mechanism are especially difficult. If decoupling can be realized, the kinematic analysis of the mechanism will be very simple. Presently, the research of the parallel mechanism is focused on the inverse solution and structure optimization, and there is a lack of rotation decoupled parallel mechanisms (DPMs). So this paper proposes a family of 2 degree of freedom (DOF) rotational DPMs based on the four-bar linkage mechanism, and performs a characteristic analysis. This family of DPMs is composed of a moving platform, a fixed base and three limbs. Taking U_RRU SPU DPM as an example, the motion feature of this DPM is analyzed with the constraint screw method, and its mobility is calculated by using the Modified Kutzbach-Grtibler criterion. The inverse and forward displacement problems of the proposed parallel mechanism are solved. The decoupled feature of the proposed parallel mechanism is validated by the deduction of the expression of the Jaeobian matrix. Three kinds of singularity conditions of this DPM are discussed, and the atlases of the output parameter concerning different geometric parameters are plotted with the theory of the physical model of the solution space. The proposition and characteristic analysis of the novel rotational DPMs in this paper should be useful for further research and application of the parallel mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金Supported by National Natural Science Foundation of China (Grant Nos.51525504,51475431)Zhejiang Provincial Natural Science Foundation of China (Grant No.LZ14E050005)Science Foundation of Zhejiang Sci-Tech University,China (Grant No.16022091-Y)
文摘Parallel mechanisms(PMs) having the same motion characteristic with a UP kinematic chain(U denotes a universal joint, and P denotes a prismatic joint) are called UP-equivalent PMs. They can be used in many applications, such as machining and milling. However, the existing UP-equivalent PMs suffer from the disadvantages of strict assembly requirements and limited rotational capability. Type synthesis of UP-equivalent PMs with high rotational capability is presented.The special 2 R1 T motion is briefly discussed and the fact that the parallel module of the Exechon robot is not a UP-equivalent PM is disclosed. Using the Lie group theory, the kinematic bonds of limb chains and their mechanical generators are presented. Structural conditions for constructing such UP-equivalent PMs are proposed,which results in numerous new architectures of UP-equivalent PMs. The high rotational capability of the synthesized mechanisms is illustrated by an example. The advantages of no strict assembly requirements and high rotational capability of the newly developed PMs will facilitate their applications in the manufacturing industry.
基金the financial supports from the Science and Technology Special Project, China (No. K19168)the National Science and Technology Major Project of China (No. 2017-VI-0004-0075)the National Natural Science Foundation of China (No. 52231002)。
文摘Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468+2 种基金51378510)supported by the National Natural Science Foundation of ChinaProject(2015zzts061)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.
基金supported by the National Natural Science Foundation of China(No. 51405229)the Natural Science Foundation of Jiangsu Province of China(Nos. BK20151470,BK20171416)
文摘The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is proposed to establish the model of PMA.The concept of hybrid elastic modulus which is related to the static characteristic of PMA is put forward,and the energy conservation law is used to achieve the expression of the hybrid elastic modulus,which can be fitted out based on experimental data,and the model of PMA can be derived from this expression.At the same time,a 3-DOF parallel mechanism(a new bionic shoulder joint)driven by five PMAs is designed.This bionic shoulder joint adopts the structure of two antagonistic PMAs actualizing a rotation control and three PMAs controlling another two rotations to get better rotation characteristics.The kinematic and dynamic characteristics of the mechanism are analyzed and a new static model of PMA is used to control it.Experimental results demonstrate the effectiveness of this new static model.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant No.2018YJS143)National Natural Science Foundation of China(Grant Nos.51675037,51505023,51475035)
文摘Most parallel mechanisms(PMs) encountered today have a common disadvantage, i.e., their low rotational capability.In order to develop PMs with high rotational capability, a family of novel manipulators with one or two dimensional rotations is proposed. The planar one-rotational one-translational(1 R1 T) and one-rotational two-translational(1 R2 T)PMs evolved from the crank-and-rocker mechanism(CRM) are presented by means of Lie group theory. A spatial 2 R1 T PM and a 2 R parallel moving platform with bifurcated large-angle rotations are proposed by orthogonal combination of the RRRR limbs. According to the product principle of the displacement group theory, a hybrid 2 R3 T mechanism in possession of bifurcated motion is obtained by connecting the 2 R parallel moving platform with a parallel part, which is constructed by four 3 T1 R kinematic chains. The presented manipulators possess high rotational capability. The proposed research enriches the family of spatial mechanisms and the construction method provides an instruction to design more complex mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.31670719).
文摘The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only rotate around two axes in sequential order.It decreases the performance of the balancing adjustment of the end-efector.In this paper,a family of 2R1T PMs without parasitic motion was reconstructed by using a novel method based on the remarkable properties of rotational bifurcation mechanisms,which can rotate in sequential order.Furthermore,some PMs rotating around two continuous axes in an arbitrary order are established by adding single joints.Taking the practicability of these structures into consideration,the workspace of 3-PRPS PM was analyzed as an example.Moreover,this study explores the practical application of the PMs without parasitic motion in developing balance mechanisms in rough-terrain fre-fghting robots.During the climbing process,the tank is adjusted to be parallel to the horizontal plane in real-time.It is proved that this kind of structure realizes continuous rotation around two rotation axes on the premise of no parasitic motion.
文摘By combining the artificial neural network with the rule reasoning expert system, an expert diagnosing system for a rotation mechanism was established. This expert system takes advantage of both a neural network and a rule reasoning expert system; it can also make use of all kinds of knowledge in the repository to diagnose the fault with the positive and negative mixing reasoning mode. The binary system was adopted to denote all kinds of fault in a rotation mechanism. The neural networks were trained with a random parallel algorithm (Alopex). The expert system overcomes the self learning difficulty of the rule reasoning expert system and the shortcoming of poor system control of the neural network. The expert system developed in this paper has powerful diagnosing ability.
基金National Natural Science Foundation of China(No.51575232)Jilin University Youth Science and Technology Innovation Fund,China(No.450060507032)
文摘In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,different rotational speeds,and different states of air spring.Aiming at the problem that computing speed of Newton iterative method for solving rotational angle is incompetence to meet the real-time requirements,and also that other methods adopting physical device such as laser displacement sensor to solve rotational angle possess larger measurement error,the analytical techniques method used for solving rotational angle is presented.Finally,by using the upper-single-6-DOF motion platform as an authentic urging mean to simulate a real vehicle,the test was carried out under the speeds of 0.2 and 1.0(°)/s,with the air spring at the inflated and deflated states,respectively.The results showthat the RRC of the bogie under various conditions is less than 0.06,which meets the standard requirement EN-14363.It was also found that the speed of vehicles moving along curves and the state of air spring were key factors influencing the RRC.The feasibilities of this model and test method are verified in this study.
基金Sponsored by the National High-tech R&D Progrom(Grant No.2011AA12A103)the Equipment Development Fund(Grant No.08001SA050)
文摘The purpose of this thesis is to derive the flexibility formula of the corner-filleted flexure hinge easily and conveniently and use it to design a micro-rotation compliant mechanism. Firstly,we get the corner-filleted flexure hinge flexibility formula by methods of symmetry transformation and coordinates translation. The correctness of this formula is validated on the basis of the finite element method and under the premise that the effects of shear stress are taken into consideration. Then a micro-rotation compliant mechanism is designed in accordance with the corner-filleted flexure hinge,and the deduction and analysis of its working moment/rigidity are conducted. Moreover,this theoretical formula is proved to be accurate and reliable through the finite element analysis and the experimental verification,based on which the structural design and optimization can be made on the rotating part of a micro adjustment device. The results illustrate that designing and optimizing the structures by the analysis model is convenient and reliable so that complicated 3D modeling and finite element analysis are not needed.
基金supported by the National Key Research and Development Program of China(2017YFA0206801)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000 and XDB10040304)the National Natural Science Foundation of China(No.21373201and No.21433014)
文摘Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in rnethanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and ro- tation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with rnethanol comparing to that with water, due to the steric effect of the rnethyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202)。
文摘The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.