To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied sig...To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.展开更多
The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two rec...The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.展开更多
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization...The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.展开更多
Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the re...Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between...A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between the two sections and controlling their temperature. The infrared nonlinear optical (NLO) crystal LiInS2 was successfully grown by the accelerated crucible rotation technique (ACRT). The crystal was characterized by using XRD and transmission microscopy. It is found that the UV-VIS-NIR and Mid-IR transmittances are about 40%.展开更多
Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These ...Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.展开更多
An effective method is introduced to compensate the effects of mutual coupling for the Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) direction finding algorithm in application of signal ...An effective method is introduced to compensate the effects of mutual coupling for the Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) direction finding algorithm in application of signal snapshot array processing.Changing the covariance matrix into a Teoplitz matrix can achieve high resolution in the Direction Of Arrive (DOA) estimation.How the mutual coupling affects the array antennas has been discussed and a new definition of mutual im- pedance has been used to characterize the mutual coupling effects between the array elements.Based on the new mutual impedance matrix,a practical method is presented to eliminate the effects of mutual coupling for ESPRIT in the single snapshot data processing.The simulation results show that, this new method not only properly reduces the effects of mutual coupling,but also maintains its steady performance even for weak signals.展开更多
We present an optical spectroscopic study based on 41 spectra of 4 Her and 32 spectra of 88 Her, obtained over a period of 6 months. We estimate the rotational velocity of these stars from HeI lines in the blue spectr...We present an optical spectroscopic study based on 41 spectra of 4 Her and 32 spectra of 88 Her, obtained over a period of 6 months. We estimate the rotational velocity of these stars from HeI lines in the blue spectral region (4000-4500 A). We find that these stars are likely to be rotating at a fractional critical rotation of -0.80. We measure the average Ip/lc ratio to quantify the strength of the Ha line and obtain 1.63 for 4 Her and 2.06 for 88 Her. The radius of the Ha emission region is estimated to be Ra/R. -5.0, assuming a Keplerian disk. These stars are thus found to be fast rotators with a relatively small Hoe emission region. We detect V/R variation of the Ha spectral line during the observed period. We re-estimate the periods for both stars and obtain a period of ,-46 d and its harmonic of 23.095 d for 4 Her, and a period of -86 d for 88 Her. As these two cases are shell stars with binaries and have low Ha EW with the emission region closer to the central star, the V/R variation and a change in period may be an effect of the binary on the circumstellar disk.展开更多
The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In t...The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In the measurements based on the frequency domain sampling (FDS), to expand the range of detection and allow the system work in harsh environments, it is necessary to enhance the identification capability at low SNR. In addition, to identify the tags in real time, it is important to reduce identification time. Therefore, estimation of signal parameters based on the Procrustes rotations via the rotational invariance technique (PRO-ESPRIT) is adopted. Experimental results show that good identification capability is achieved with a relatively faster measurement speed.展开更多
Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especiall...Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.展开更多
A low-complexity angle estimation method for multiple-input multiple-output(MIMO) radar using beamspace unitary estimation of signal parameters via rotational invariance techniques(ESPRIT) is presented.Reduced-dimensi...A low-complexity angle estimation method for multiple-input multiple-output(MIMO) radar using beamspace unitary estimation of signal parameters via rotational invariance techniques(ESPRIT) is presented.Reduced-dimensional transformation is firstly utilized as a pre-processing to obtain the reduced-dimensional data matrix, and then a conjugate centrosymmetric discrete Fourier transform(DFT) matrix is employed to map the received data into lower-dimensional beamspace and transforms the complex covariance matrix into a realvalued one. At last, the rotational invariance structure of the real-valued signal subspace is constructed in the beamspace to obtain the estimation of direction of arrival(DOA). Compared with the other ESPRIT algorithms,the proposed method can achieve improved estimation performance with a significantly reduced computational complexity. Simulation results are presented to demonstrate the effectiveness of the proposed method.展开更多
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(60604011)
文摘To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.
基金Projects 60372081, 30170259 and 30570475 supported by the National Natural Science Foundation of China, VSN-2005-01 the Opened Foundation of National Key-Lab of Vibration, Impact and Noise, 80523+1 种基金the Science Foundation of Hainan Province and Hj200501 the Foundation of Education Department of Hainan Province
文摘The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.
基金supported by the National Natural Science Foundation of China(11234002)
文摘The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information.
基金Supported by the National Natural Science Foundation of China (No.60801052)Aeronautical Science Foundation of China (No.2008ZC52026,2009ZC52036)
文摘Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
基金the NNSFC (No. 50590403, 50325311)the 973 program of China (No. 2004CB619002)
文摘A Bridgman growth furnace was modified by adding adiabatic material between two furnace tubes. The appropriate temperature gradient of 10-30 ℃/cm at the growth interface was obtained by adjusting the distance between the two sections and controlling their temperature. The infrared nonlinear optical (NLO) crystal LiInS2 was successfully grown by the accelerated crucible rotation technique (ACRT). The crystal was characterized by using XRD and transmission microscopy. It is found that the UV-VIS-NIR and Mid-IR transmittances are about 40%.
文摘Accelerated crucible rotation technique(ACRT) has been used for the directional solidification of Al-4.5wt% Cu binary alloy.By rotating the crucible at varying rate and direction,forced liquid flows are aroused These flows include Ekman flow,Couette flow and Spiral Shear flow.Especially,Ekman flow acts directly at the L/S interface,changes diffusion and heat exchange conditions and has strong influences on the morphology of L/S interface.Experimental results show that,compared with normal Bridgman specimens,the solidification region is much narrower and the cell spacing is much smaller in ACRT specimens.These influences become much stronger when the accelerating rate is increased.
文摘An effective method is introduced to compensate the effects of mutual coupling for the Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT) direction finding algorithm in application of signal snapshot array processing.Changing the covariance matrix into a Teoplitz matrix can achieve high resolution in the Direction Of Arrive (DOA) estimation.How the mutual coupling affects the array antennas has been discussed and a new definition of mutual im- pedance has been used to characterize the mutual coupling effects between the array elements.Based on the new mutual impedance matrix,a practical method is presented to eliminate the effects of mutual coupling for ESPRIT in the single snapshot data processing.The simulation results show that, this new method not only properly reduces the effects of mutual coupling,but also maintains its steady performance even for weak signals.
基金funded by the Centre for Research,Christ University,Bangalore as part of a major research project titled“Understanding the circumstellar disk in Classical Be-stars”
文摘We present an optical spectroscopic study based on 41 spectra of 4 Her and 32 spectra of 88 Her, obtained over a period of 6 months. We estimate the rotational velocity of these stars from HeI lines in the blue spectral region (4000-4500 A). We find that these stars are likely to be rotating at a fractional critical rotation of -0.80. We measure the average Ip/lc ratio to quantify the strength of the Ha line and obtain 1.63 for 4 Her and 2.06 for 88 Her. The radius of the Ha emission region is estimated to be Ra/R. -5.0, assuming a Keplerian disk. These stars are thus found to be fast rotators with a relatively small Hoe emission region. We detect V/R variation of the Ha spectral line during the observed period. We re-estimate the periods for both stars and obtain a period of ,-46 d and its harmonic of 23.095 d for 4 Her, and a period of -86 d for 88 Her. As these two cases are shell stars with binaries and have low Ha EW with the emission region closer to the central star, the V/R variation and a change in period may be an effect of the binary on the circumstellar disk.
文摘The surface acoustic wave (SAW) identification (ID)-tags have great potential for application in radio frequency identification (RFID) due to their characteristics of wireless sensing and passive operation. In the measurements based on the frequency domain sampling (FDS), to expand the range of detection and allow the system work in harsh environments, it is necessary to enhance the identification capability at low SNR. In addition, to identify the tags in real time, it is important to reduce identification time. Therefore, estimation of signal parameters based on the Procrustes rotations via the rotational invariance technique (PRO-ESPRIT) is adopted. Experimental results show that good identification capability is achieved with a relatively faster measurement speed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302022,12172248,12021002,and 12132010)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.22JCQNJC00780)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2024-09)the IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology(Grant No.202306).
文摘Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.
基金the National Natural Science Foundation of China(No.61602377)
文摘A low-complexity angle estimation method for multiple-input multiple-output(MIMO) radar using beamspace unitary estimation of signal parameters via rotational invariance techniques(ESPRIT) is presented.Reduced-dimensional transformation is firstly utilized as a pre-processing to obtain the reduced-dimensional data matrix, and then a conjugate centrosymmetric discrete Fourier transform(DFT) matrix is employed to map the received data into lower-dimensional beamspace and transforms the complex covariance matrix into a realvalued one. At last, the rotational invariance structure of the real-valued signal subspace is constructed in the beamspace to obtain the estimation of direction of arrival(DOA). Compared with the other ESPRIT algorithms,the proposed method can achieve improved estimation performance with a significantly reduced computational complexity. Simulation results are presented to demonstrate the effectiveness of the proposed method.