The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:t...The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:the angular velocity of the nutation frame with respect to the spatial frame,which represents the nutation,and the angles defining the orientation of the Earth with respect to the nutation frame,which represents the polar motion.Together with the definition of the nutation frame (as the definition of the nutation frame is arbitrary to some extent),one can solve simultaneously forced and free nutation and polar motion.As demonstrative examples,studies of nutation and polar motion are made by assuming the nutation axis to be the Earth’s figure axis,rotation axis and angular momentum axis respectively.And the case of the celestial ephemeris pole is also studied.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the speci...The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.展开更多
In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are d...In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.展开更多
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et ...The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the elegant change of variables (considering the true anomaly f as the independent variable), the governing equation of satellite rotation takes the form of an Abel ordinary differential equation (ODE) of the second kind, a sort of generalization of the Riccati ODE. We note that due to the special character of solutions of a Riccati-type ODE, there exists the possibility of sudden jumping in the magnitude of the solution at some moment of time. In the physical sense, this jumping of the Riccati-type solutions of the governing ODE could be associated with the effect of sudden acceleration[deceleration in the satellite rotation around the chosen principle axis at a definite moment of parametric time. This means that there exists not only a chaotic satellite rotation regime (as per the results of J. Wisdom et al. (1984)), but a kind of gradient catastrophe (Arnold, 1992) could occur during the satellite rotation process. We especially note that if a gradient catastrophe could occur, this does not mean that it must occur: such a possibility depends on the initial conditions. In addition, we obtained asymptotical solutions that manifest a quasi-periodic character even with the strong simplifying assumptions e → 0, p -- 1, which reduce the governing equation of J. Wisdom et al. (1984) to a kind of Beletskii's equation.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equati...For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.展开更多
The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtai...The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper report...Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.展开更多
The theory of rotational relativistic mechanics is discussed and the theory of relativistic analytical mechanics' of the rotational systems is constructed. The relativistic generalized kinetic energy function for ...The theory of rotational relativistic mechanics is discussed and the theory of relativistic analytical mechanics' of the rotational systems is constructed. The relativistic generalized kinetic energy function for the rotational systems [GRAPHICS] and the generalized acceleration energy function [GRAPHICS] are constructed, and furthermore, the Hamilton principle and three kinds of D'Alembert principles are given. For the systems with holonomic constraints, the relativistic Lagrange equation, Nielsen equation, Appell equation and Hamilton canonical equation of the rotational systems are constructed; For the systems with nonholonomic constraints, the relativistic Routh equation, Chaplygin equation, Nielsen equation and Appell equation of the rotational systems are constructed; the relativistic Noether conservation law of the rotational systems are given too.展开更多
This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the...This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the Pfaff action of rotating relativistic Birkhoffian systems was defined. The Pfaff-Birkhoff principles and Birkhoff's equations of the constrained rotating relativistic systems were obtained. The geometrical description, the exact properties and their forms on R T^*M for the constrained rotating relativistic Birkhoffian systems are given. The global analyses of the autonomous, semi-autonomous and non-autonomous constrained relativistic Birkhoff's equations as well as the geometrical properties of energy change for the constrained rotating relativistic Birkhoffian systems were also conducted.展开更多
This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressi...This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.展开更多
Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave s...Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.展开更多
There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility t...There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.展开更多
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropi...The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.展开更多
Within the seasonal-annual timeseale,there exists an angular momentum conservative exchange relationship be- tween the solid earth and the atmosphere,and their angular momentum exchange not only can cause variations i...Within the seasonal-annual timeseale,there exists an angular momentum conservative exchange relationship be- tween the solid earth and the atmosphere,and their angular momentum exchange not only can cause variations in length-of-day(LOD)but also can express anomalies in atmospheric general circulation.Therefore,their angular mo- mentum exchange mechanism should be introduced into the general circulation model. Considering the angular momentum anomalous exchange caused by the air-earth interface friction effect,a whole-layer atmospheric motion equation is derived in this paper including the earth spin anomalous friction force parameterized by using the change in the earth rotation rate.Through analysing the equation,it shows that the magni- tude of the earth spin anomalous friction force is the same as that of Coriolis force on seasonal-annual timescale.展开更多
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChi na (No .498740 0 3)
文摘The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:the angular velocity of the nutation frame with respect to the spatial frame,which represents the nutation,and the angles defining the orientation of the Earth with respect to the nutation frame,which represents the polar motion.Together with the definition of the nutation frame (as the definition of the nutation frame is arbitrary to some extent),one can solve simultaneously forced and free nutation and polar motion.As demonstrative examples,studies of nutation and polar motion are made by assuming the nutation axis to be the Earth’s figure axis,rotation axis and angular momentum axis respectively.And the case of the celestial ephemeris pole is also studied.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
文摘The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.
文摘In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.
文摘The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the elegant change of variables (considering the true anomaly f as the independent variable), the governing equation of satellite rotation takes the form of an Abel ordinary differential equation (ODE) of the second kind, a sort of generalization of the Riccati ODE. We note that due to the special character of solutions of a Riccati-type ODE, there exists the possibility of sudden jumping in the magnitude of the solution at some moment of time. In the physical sense, this jumping of the Riccati-type solutions of the governing ODE could be associated with the effect of sudden acceleration[deceleration in the satellite rotation around the chosen principle axis at a definite moment of parametric time. This means that there exists not only a chaotic satellite rotation regime (as per the results of J. Wisdom et al. (1984)), but a kind of gradient catastrophe (Arnold, 1992) could occur during the satellite rotation process. We especially note that if a gradient catastrophe could occur, this does not mean that it must occur: such a possibility depends on the initial conditions. In addition, we obtained asymptotical solutions that manifest a quasi-periodic character even with the strong simplifying assumptions e → 0, p -- 1, which reduce the governing equation of J. Wisdom et al. (1984) to a kind of Beletskii's equation.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘For steady frictionless flow along a straight line, when a constant acceleration is applied parallel to that line, a term needs to be added to the standard form of Bernoulli’s equation. After so modifying, the equation then predicts that along a streamline, when the speed is high, the pressure is significantly lower than that if there were no acceleration. For example, one might think of a dense fluid falling down through a less dense fluid under gravity. Potential applications to vertical motions of the atmosphere, such as down bursts of cold dry air and warm humid updrafts in the eye of a hurricane, are mentioned.
文摘The present study deals with a traditional physical problem: the solution of the Kepler’s equation for all conics (ellipse, hyperbola or parabola). Solution of the universal Kepler’s equation in closed form is obtained with the help of the two-dimensional Laplace technique, expressing the universal functions as a function of the universal anomaly and the time. Combining these new expressions of the universal functions and their identities, we establish one biquadratic equation for universal anomaly (χ) for all conics;solving this new equation, we have a new exact solution of the present problem for the universal anomaly as a function of the time. The verifying of the universal Kepler’s equation and the traditional forms of Kepler’s equation from this new solution are discussed. The plots of the elliptic, hyperbolic or parabolic Keplerian orbits are also given, using this new solution.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
文摘Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.
文摘The theory of rotational relativistic mechanics is discussed and the theory of relativistic analytical mechanics' of the rotational systems is constructed. The relativistic generalized kinetic energy function for the rotational systems [GRAPHICS] and the generalized acceleration energy function [GRAPHICS] are constructed, and furthermore, the Hamilton principle and three kinds of D'Alembert principles are given. For the systems with holonomic constraints, the relativistic Lagrange equation, Nielsen equation, Appell equation and Hamilton canonical equation of the rotational systems are constructed; For the systems with nonholonomic constraints, the relativistic Routh equation, Chaplygin equation, Nielsen equation and Appell equation of the rotational systems are constructed; the relativistic Noether conservation law of the rotational systems are given too.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10672143, 10372053), and the Natural Science Foundation of Henan Province (Grant Nos.03011011400, 05011022200)
文摘This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the Pfaff action of rotating relativistic Birkhoffian systems was defined. The Pfaff-Birkhoff principles and Birkhoff's equations of the constrained rotating relativistic systems were obtained. The geometrical description, the exact properties and their forms on R T^*M for the constrained rotating relativistic Birkhoffian systems are given. The global analyses of the autonomous, semi-autonomous and non-autonomous constrained relativistic Birkhoff's equations as well as the geometrical properties of energy change for the constrained rotating relativistic Birkhoffian systems were also conducted.
文摘This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.
文摘Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity u i and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.
文摘There exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility to have some critical values on the bifurcation parameter. Corresponding to these values, the pseudo-singular point, which is a singular point in the time-scaled-reduced system should be changed to another one. Then, the canards may fly to another pseudo-singular point, if possible. Can the canards fly? The structural stability gives the possibility for the canards flying. The precise reasons why happen are described in this paper.
基金Project supported by the National Natural Science Foundation of China(No.50678108)the Natural Science Foundation of Zhejiang Province(No.Y106264 )
文摘The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.
基金This work is supported by the National Natural Science Foundation of China(No.493752477)the Doctorial Program Foundation of the Institution of Higher Education.
文摘Within the seasonal-annual timeseale,there exists an angular momentum conservative exchange relationship be- tween the solid earth and the atmosphere,and their angular momentum exchange not only can cause variations in length-of-day(LOD)but also can express anomalies in atmospheric general circulation.Therefore,their angular mo- mentum exchange mechanism should be introduced into the general circulation model. Considering the angular momentum anomalous exchange caused by the air-earth interface friction effect,a whole-layer atmospheric motion equation is derived in this paper including the earth spin anomalous friction force parameterized by using the change in the earth rotation rate.Through analysing the equation,it shows that the magni- tude of the earth spin anomalous friction force is the same as that of Coriolis force on seasonal-annual timescale.