The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which...The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which is the main work part in the rotor system,is almost ignored.Here,a dynamic model of the rotor system with loose disc caused by the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic surface topography,the vibration characteristics of the system are analyzed and discussed by the number simulation,and verified by the experiment.The results show that the speed of the shaft,the contact stiffness,the clearance between the disc and shaft,the damping of the disc and the rotational damping have an influence on the rotation state of the disc.When the rotation speed of the disc and the shaft are same,the collision frequency is mainly composed of one frequency multiplication component and very weak high frequency multiplication components.When the rotation speed of the disc and the shaft is close,the vibration of the disc occurs a beat vibration phenomenon in the horizontal direction.Simultaneously,a periodical similar beat vibration phenomenon also occurs in the waveform of the disc-shaft displacement difference.The collision frequency is mainly composed of a low frequency and a weak high frequency component.When the rotation speed of the disc and the shaft has great difference,the collision frequency is mainly composed of one frequency multiplication,a few weak high frequency multiplication components and a few low frequency multiplication component.With the reduction of the relative speed of the disc,the trajectory of the disc changes from circle-shape to inner eight-shape,and then to circle-shape.In the inner eight-shape,the inner ring first gradually becomes smaller and then gradually becomes larger,and the outer ring is still getting smaller.The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with the loose disc.展开更多
In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient o...In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.展开更多
基金National Natural Science Foundation of China(Grant Nos.51675258,51875301,51265039)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology of China(Grant No.6142003190210).
文摘The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which is the main work part in the rotor system,is almost ignored.Here,a dynamic model of the rotor system with loose disc caused by the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic surface topography,the vibration characteristics of the system are analyzed and discussed by the number simulation,and verified by the experiment.The results show that the speed of the shaft,the contact stiffness,the clearance between the disc and shaft,the damping of the disc and the rotational damping have an influence on the rotation state of the disc.When the rotation speed of the disc and the shaft are same,the collision frequency is mainly composed of one frequency multiplication component and very weak high frequency multiplication components.When the rotation speed of the disc and the shaft is close,the vibration of the disc occurs a beat vibration phenomenon in the horizontal direction.Simultaneously,a periodical similar beat vibration phenomenon also occurs in the waveform of the disc-shaft displacement difference.The collision frequency is mainly composed of a low frequency and a weak high frequency component.When the rotation speed of the disc and the shaft has great difference,the collision frequency is mainly composed of one frequency multiplication,a few weak high frequency multiplication components and a few low frequency multiplication component.With the reduction of the relative speed of the disc,the trajectory of the disc changes from circle-shape to inner eight-shape,and then to circle-shape.In the inner eight-shape,the inner ring first gradually becomes smaller and then gradually becomes larger,and the outer ring is still getting smaller.The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with the loose disc.
文摘In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.