Vehicular Ad-hoc Networks (VANETs) have been suggested as an active and powerful field of research to mitigate environmental problems and challenges. The main challenge in a VANET is to ensure routing with a good Qu...Vehicular Ad-hoc Networks (VANETs) have been suggested as an active and powerful field of research to mitigate environmental problems and challenges. The main challenge in a VANET is to ensure routing with a good Quality of Service (QoS). The Greedy Perimeter Stateless Routing (GPSR) protocol is one of the most promising position- based routing mechanisms used to overcome this challenge. Its effectiveness depends entirely on the information on a node's mobility and the precision of this information. By broadcasting periodic beaconing within trans- mission boundary ranges, GPSR can manage neighbors' mobility information and maintain up-to-date lists of neighbours. Nevertheless, information on the position of a neighboring vehicle quickly becomes outdated, which negatively influences the efficiency of the routing. In order to monitor information mobility and to increase the QoS in this challenging area, position estimation needs to he considered. Thus, in this study, we examine the position estimation problem, and propose an improvement to the GPSR protocol, named KF-GPSR, where each vehicle estimates in real time the position of its neighbors using the Kalman filter algorithm. Indeed, by employing this strong estimation technique, it is possible to reduce consid- erably the frequency of exchanged beacon packets, while maintaining high position accuracy. For greater reliability, we also propose an extension to KF-GPSR, called BOD-KF-GPSR, that uses the "beacon-on-demand" process only if a node needs to rediscover its neighborhood. Simulation experiments using the network simulator NS-2 are presented to demonstrate the ability and usefulness of our two proposals. Here, we compare the pro- posed protocols against diverse common protocols: GPSR, AODV, DSR, and ZRP. The results show that BOD-KF- GPSR achieves a significant enhancement in terms of its packet delivery ratio, routing cost, normalized routing load, end-to-end delay, and throughput.展开更多
Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communicatio...Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.展开更多
文摘Vehicular Ad-hoc Networks (VANETs) have been suggested as an active and powerful field of research to mitigate environmental problems and challenges. The main challenge in a VANET is to ensure routing with a good Quality of Service (QoS). The Greedy Perimeter Stateless Routing (GPSR) protocol is one of the most promising position- based routing mechanisms used to overcome this challenge. Its effectiveness depends entirely on the information on a node's mobility and the precision of this information. By broadcasting periodic beaconing within trans- mission boundary ranges, GPSR can manage neighbors' mobility information and maintain up-to-date lists of neighbours. Nevertheless, information on the position of a neighboring vehicle quickly becomes outdated, which negatively influences the efficiency of the routing. In order to monitor information mobility and to increase the QoS in this challenging area, position estimation needs to he considered. Thus, in this study, we examine the position estimation problem, and propose an improvement to the GPSR protocol, named KF-GPSR, where each vehicle estimates in real time the position of its neighbors using the Kalman filter algorithm. Indeed, by employing this strong estimation technique, it is possible to reduce consid- erably the frequency of exchanged beacon packets, while maintaining high position accuracy. For greater reliability, we also propose an extension to KF-GPSR, called BOD-KF-GPSR, that uses the "beacon-on-demand" process only if a node needs to rediscover its neighborhood. Simulation experiments using the network simulator NS-2 are presented to demonstrate the ability and usefulness of our two proposals. Here, we compare the pro- posed protocols against diverse common protocols: GPSR, AODV, DSR, and ZRP. The results show that BOD-KF- GPSR achieves a significant enhancement in terms of its packet delivery ratio, routing cost, normalized routing load, end-to-end delay, and throughput.
文摘Wireless sensor networks are envisioned to be an integral part of cyber-physical systems, yet wireless networks are inherently dynamic and come with various uncertainties. One such uncertainty is wireless communication itself which assumes complex spatial and temporal dynamics. For dependable and predictable performance, therefore, link estimation has become a basic element of wireless network routing. Several approaches using broadcast beacons and/or unicast MAC feedback have been proposed in the past years, but there is still no systematic characterization of the drawbacks and sources of errors in bea- con-based link estimation in low-power wireless networks, which leads to ad hoc usage of beacons in rout- ing. Using a testbed of 98 XSM motes (an enhanced version of MICA2 motes), we characterize the negative impact that link layer retransmission and traffic-induced interference have on the accuracy of beacon-based link estimation, and we show that data-driven link estimation and routing achieve higher event reliability (e.g. by up to 18.75%) and transmission efficiency (e.g., by up to a factor of 1.96) than beacon-based approaches These findings provide solid evidence for the necessity of data-driven link estimation and demonstrate the importance of addressing the drawbacks of beacon-based link estimation when designing protocols for low-power wireless networks of cyber-physical systems.