This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industria...The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.展开更多
With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous conn...With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches.展开更多
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s...Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.展开更多
Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient co...Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.展开更多
Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,incl...Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,including lower capacity links,energy utilization,enhancement of resources and limited resources due to its openness,heterogeneity,limited resources and extensiveness.It is challenging to route packets in such a constrained environment.In an IoT network constrained by limited resources,minimal routing control overhead is required without packet loss.Such constrained environments can be improved through the optimal routing protocol.It is challenging to route packets in such a constrained environment.Thus,this work is motivated to present an efficient routing protocol for enhancing the lifetime of the IoT network.Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next Generation(LOADng)protocol is an extended version of the Ad Hoc On-Demand Distance Vector(AODV)protocol.Unlike AODV,LOADng is a lighter version that forbids the intermediate nodes on the route to send a route reply(RREP)for the route request(RREQ),which originated from the source.A resource-constrained IoT network demands minimal routing control overhead and faster packet delivery.So,in this paper,the parameters of the LOADng routing protocol are optimized using the black widow optimization(BWO)algorithm to reduce the control overhead and delay.Furthermore,the performance of the proposed model is analyzed with the default LOADng in terms of delay,delivery ratio and overhead.Obtained results show that the LOADng-BWO protocol outperforms the conventional LOADng protocol.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has ...BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.展开更多
Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement o...Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.展开更多
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
The Agatsuma et al’s study shows that despite the evidence of the benefits of an early colorectal cancer(CRC)diagnosis,through screening in asymptomatic subjects,up to 50%of candidates reject this option and many of ...The Agatsuma et al’s study shows that despite the evidence of the benefits of an early colorectal cancer(CRC)diagnosis,through screening in asymptomatic subjects,up to 50%of candidates reject this option and many of those affected are diagnosed later,in advanced stages.The efficacy of screening programs has been well-established for several years,which reduces the risk of CRC morbidity and mortality,without taking into account the test used for screening,or other tools.Nevertheless,a significant proportion of patients remain unscreened,so understanding the factors involved,as well as the barriers of the population to adherence is the first step to possibly modify the participation rate.These barriers could include a full range of social and political aspects,especially the type of financial provision of each health service.In Japan,health services are universal,and this advantageous situation makes it easier for citizens to access to these services,contributing to the detection of various diseases,including CRC.Interestingly,the symptomatic CRC group had a lower early-stage diagnosis rate than the patients detected during follow-up for other comorbidities,and symptomatic and cancer screening groups showed similar early-stage diagnosis.展开更多
Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource...Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.展开更多
Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abili...Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.展开更多
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall...Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.展开更多
Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station ...Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.展开更多
The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollut...The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollution data,mine survey,oceanographic information collection,aided navigation,strategic surveillance,and collection of ocean samples using detectors that are submerged inwater.Localization,congestion routing,and prioritizing the traffic is the major issue in an underwater sensor network.Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource.Minimization of localization error using the proposed angle-based forwarding scheme is explained in this paper.We choose the shortest path to the destination using the fitness function which is calculated based on fault ratio,dispatching of packets,power,and distance among the nodes.This work contemplates congestion conscious forwarding using hard stage and soft stage schemes which reduce the congestion by monitoring the status of the energy and buffer of the nodes and controlling the traffic.The study with the use of the ns3 simulator demonstrated that a given algorithm accomplishes superior performance for loss of packet,delay of latency,and power utilization than the existing algorithms.展开更多
Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not r...Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.展开更多
A Wireless Sensor Network(WSN)becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable.Concerning the energy prod...A Wireless Sensor Network(WSN)becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable.Concerning the energy produc-tion of the nodes,WSN has major issues that may influence the stability of the system.As a result,constructing WSN requires devising protocols and standards that make the most use of constrained capacity,especially the energy resources.WSN faces some issues with increased power utilization and an on going devel-opment due to the uneven energy usage between the nodes.Clustering has proven to be a more effective strategy in this series.In the proposed work,a hybrid meth-od is used for reducing the energy consumption among CHs.A Fuzzy Logic-based clustering protocol FLUC(unequally clustered)and Fuzzy Clustering with Energy-Efficient Routing Protocol(FCERP)are used.A Fuzzy Clustering with Energy Efficient Routing Protocol(FCERP)reduces the WSN power usage and increases the lifespan of the network.FCERP has created a novel cluster-based fuzzy routing mechanism that uses a limit value to combine the clustering and multi-hop routing capabilities.The technique creates uneven groups by using fuz-zy logic with a competitive range to choose the Cluster Head(CH).The input variables include the distance of the nodes from the ground station,concentra-tions,and remaining energy.The proposed FLUC-FCERP reduces the power usage and improves the lifetime of the network compared with the existing algorithms.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
基金This work was supported by the Basic Science Research Program through the NationalResearch Foundation ofKorea(NRF)funded by the Ministry of Education under Grant RS-2023-00237300 and Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Agriculture and Food Convergence Technologies Program for Research Manpower Development,funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(Project No.RS-2024-00397026).
文摘The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(235/44)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R114)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR71)This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches.
基金This work was supported by the Serbian Ministry of Science and Education(project TR-32022)by companies Telekom Srbija and Informatika.
文摘Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.
文摘Cognitive Radio Networks(CRNs)have become a successful platform in recent years for a diverse range of future systems,in particularly,industrial internet of things(IIoT)applications.In order to provide an efficient connection among IIoT devices,CRNs enhance spectrum utilization by using licensed spectrum.However,the routing protocol in these networks is considered one of the main problems due to node mobility and time-variant channel selection.Specifically,the channel selection for routing protocol is indispensable in CRNs to provide an adequate adaptation to the Primary User(PU)activity and create a robust routing path.This study aims to construct a robust routing path by minimizing PU interference and routing delay to maximize throughput within the IIoT domain.Thus,a generic routing framework from a cross-layer perspective is investigated that intends to share the information resources by exploiting a recently proposed method,namely,Channel Availability Probability.Moreover,a novel cross-layer-oriented routing protocol is proposed by using a time-variant channel estimation technique.This protocol combines lower layer(Physical layer and Data Link layer)sensing that is derived from the channel estimation model.Also,it periodically updates and stores the routing table for optimal route decision-making.Moreover,in order to achieve higher throughput and lower delay,a new routing metric is presented.To evaluate the performance of the proposed protocol,network simulations have been conducted and also compared to the widely used routing protocols,as a benchmark.The simulation results of different routing scenarios demonstrate that our proposed solution outperforms the existing protocols in terms of the standard network performance metrics involving packet delivery ratio(with an improved margin of around 5–20%approximately)under varying numbers of PUs and cognitive users in Mobile Cognitive Radio Networks(MCRNs).Moreover,the cross-layer routing protocol successfully achieves high routing performance in finding a robust route,selecting the high channel stability,and reducing the probability of PU interference for continued communication.
文摘Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things(IoT),making it possible to accomplish tasks with less human interaction.However,it faces many problems,including lower capacity links,energy utilization,enhancement of resources and limited resources due to its openness,heterogeneity,limited resources and extensiveness.It is challenging to route packets in such a constrained environment.In an IoT network constrained by limited resources,minimal routing control overhead is required without packet loss.Such constrained environments can be improved through the optimal routing protocol.It is challenging to route packets in such a constrained environment.Thus,this work is motivated to present an efficient routing protocol for enhancing the lifetime of the IoT network.Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next Generation(LOADng)protocol is an extended version of the Ad Hoc On-Demand Distance Vector(AODV)protocol.Unlike AODV,LOADng is a lighter version that forbids the intermediate nodes on the route to send a route reply(RREP)for the route request(RREQ),which originated from the source.A resource-constrained IoT network demands minimal routing control overhead and faster packet delivery.So,in this paper,the parameters of the LOADng routing protocol are optimized using the black widow optimization(BWO)algorithm to reduce the control overhead and delay.Furthermore,the performance of the proposed model is analyzed with the default LOADng in terms of delay,delivery ratio and overhead.Obtained results show that the LOADng-BWO protocol outperforms the conventional LOADng protocol.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
文摘BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.
文摘Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
文摘The Agatsuma et al’s study shows that despite the evidence of the benefits of an early colorectal cancer(CRC)diagnosis,through screening in asymptomatic subjects,up to 50%of candidates reject this option and many of those affected are diagnosed later,in advanced stages.The efficacy of screening programs has been well-established for several years,which reduces the risk of CRC morbidity and mortality,without taking into account the test used for screening,or other tools.Nevertheless,a significant proportion of patients remain unscreened,so understanding the factors involved,as well as the barriers of the population to adherence is the first step to possibly modify the participation rate.These barriers could include a full range of social and political aspects,especially the type of financial provision of each health service.In Japan,health services are universal,and this advantageous situation makes it easier for citizens to access to these services,contributing to the detection of various diseases,including CRC.Interestingly,the symptomatic CRC group had a lower early-stage diagnosis rate than the patients detected during follow-up for other comorbidities,and symptomatic and cancer screening groups showed similar early-stage diagnosis.
文摘Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.
文摘Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR14).
文摘Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.
文摘Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.
文摘The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollution data,mine survey,oceanographic information collection,aided navigation,strategic surveillance,and collection of ocean samples using detectors that are submerged inwater.Localization,congestion routing,and prioritizing the traffic is the major issue in an underwater sensor network.Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource.Minimization of localization error using the proposed angle-based forwarding scheme is explained in this paper.We choose the shortest path to the destination using the fitness function which is calculated based on fault ratio,dispatching of packets,power,and distance among the nodes.This work contemplates congestion conscious forwarding using hard stage and soft stage schemes which reduce the congestion by monitoring the status of the energy and buffer of the nodes and controlling the traffic.The study with the use of the ns3 simulator demonstrated that a given algorithm accomplishes superior performance for loss of packet,delay of latency,and power utilization than the existing algorithms.
基金supported by NIH Core Grants P30-EY008098the Eye and Ear Foundation of Pittsburghunrestricted grants from Research to Prevent Blindness,New York,NY,USA(to KCC)。
文摘Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
文摘A Wireless Sensor Network(WSN)becomes a newer type of real-time embedded device that can be utilized for a wide range of applications that make regular networking which appears impracticable.Concerning the energy produc-tion of the nodes,WSN has major issues that may influence the stability of the system.As a result,constructing WSN requires devising protocols and standards that make the most use of constrained capacity,especially the energy resources.WSN faces some issues with increased power utilization and an on going devel-opment due to the uneven energy usage between the nodes.Clustering has proven to be a more effective strategy in this series.In the proposed work,a hybrid meth-od is used for reducing the energy consumption among CHs.A Fuzzy Logic-based clustering protocol FLUC(unequally clustered)and Fuzzy Clustering with Energy-Efficient Routing Protocol(FCERP)are used.A Fuzzy Clustering with Energy Efficient Routing Protocol(FCERP)reduces the WSN power usage and increases the lifespan of the network.FCERP has created a novel cluster-based fuzzy routing mechanism that uses a limit value to combine the clustering and multi-hop routing capabilities.The technique creates uneven groups by using fuz-zy logic with a competitive range to choose the Cluster Head(CH).The input variables include the distance of the nodes from the ground station,concentra-tions,and remaining energy.The proposed FLUC-FCERP reduces the power usage and improves the lifetime of the network compared with the existing algorithms.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.