Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocataly...Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.展开更多
Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in ...Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in alkaline media.In this work,an efficient HER electrocatalyst with hetero-interfacial metal-metal oxide structure was constructed through a redox solid phase reaction(SPR) strategy.During the annealing process under Ar atmosphere,RuO_(2) and WS_(2)in RuO_(2)/WS_(2)precursor were converted to Ru nanoparticles(NPs) and WO3in situ,where tiny Ru NPs and oxygen vacancies were uniformly distributed onto the newly formed WO3nanosheets.Different characterization techniques were adopted to confirm the successful formation of Ru/WO_(3)electrocatalyst(RWOC).The optimized RWOC sample annealed at 400℃ exhibited the low overpotential value of 13 mV at a current density of 10 mA cm^(-2)and strong durability under the alkaline condition.Density functional theoretical calculations further revealed that the promoted adsorption/desorption rate of reaction intermediates and the accelerated kinetics of HER process were deduced to the synergistic effect between Ru and WO_(3)in electrocatalyst.This work provides a feasible method to fabricate highly efficient HER electrocatalysts.展开更多
The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attentio...The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.展开更多
Selective reductive amination of carbonyl compounds with high activity is very essential for the chemical and pharmaceutical industry,but scarcely successful paradigm was reported via efficient photocatalytic reaction...Selective reductive amination of carbonyl compounds with high activity is very essential for the chemical and pharmaceutical industry,but scarcely successful paradigm was reported via efficient photocatalytic reactions.Herein,the ultrasmall Ru nanoclusters(~0.9 nm)were successfully fabricated over P25 support with positive charged Ru^(δ+)species at the interface.A new route was developed to achieve the furfural(FAL)to furfurylamine(FAM)by coupling the light-driven reductive amination and hydrogen transfer of ethanol over this type catalyst.Strikingly,the photocatalytic activity and selectivity are strongly dependent on the particle size and electronic structure of Ruthenium.The Ru^(δ+)species at the interface promote the formation of active imine intermediates;moreover,the Ru nanoclusters facilitate the separation efficiency of electrons and holes as well as accelerate the further hydrogenation of imine intermediates to product primary amines.In contrast Ru particles in larger nanometer size facilitate the formation of the furfuryl alcohol and excessive hydrogenation products.In addition,the coupling byproducts can be effectively inhibited via the construction of sub-nanocluster.This study offers a new path to produce the primary amines from biomass-derived carbonyl compounds over hybrid semiconductor/metal-clusters photocatalyst via light-driven tandem catalytic process.展开更多
The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution r...The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).展开更多
氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过...氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。展开更多
Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were us...Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.展开更多
Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru ...Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts.展开更多
The catalytic hydrogenation of D-glucose over a 3 wt% Ru/C catalyst was studied varying the operating conditions in mild conditions range to optimize the obtention of D-sorbitol. The stirring speed, temperature, press...The catalytic hydrogenation of D-glucose over a 3 wt% Ru/C catalyst was studied varying the operating conditions in mild conditions range to optimize the obtention of D-sorbitol. The stirring speed, temperature, pressure, and initial glucose concentration were varied between 250 - 700 rpm, 343 - 383 K, 0.5 - 2 MPa, and 0.033 - 0.133 M, respectively. To verify the absence of mass transport limitations, the diffusion of reagents in the gas-liquid interface, the liquid-solid interface, and the internal diffusion in the particles were evaluated. Under the operating conditions studied, the reaction rate showed an order with respect to H<sub>2</sub> of 0.586 and with respect to glucose of 0.406. The kinetic data were adjusted using 3 general models and 19 different sub-models based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics. Model 3a was the best one interpreting the aqueous phase hydrogenation of glucose (both reagents competitively adsorbed on the catalyst). The H<sub>2</sub> adsorption is dissociative and the rate-limiting step is the surface chemical reaction.展开更多
Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-c...Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.展开更多
基金the support from the National Natural Science Foundation of China(22272121,21972107)the National Key Research and Development program of China(2021YFB4001200)。
文摘Metastable nanostructured electrocatalyst with a completely different surface environment compared to conventional phase-based electrocatalyst often shows distinctive catalytic property.Although Ru-based electrocatalysts have been widely investigated toward hydrogen oxidation reaction(HOR)under alkaline electrolytes,these studies are mostly limited to conventional hexagonal-close-packed(hcp)phase,mainly arising from the lack of sufficient synthesis strategies.In this study,we report the precise synthesis of metastable binary RuW alloy with face-centered-cubic(fcc)phase.We find that the introduction of W can serve as fcc phase seeds and reduce the formation energy of metastable fcc-RuW alloy.Impressively,fcc-RuW exhibits remarkable alkaline HOR performance and stability with the activity of 0.67 mA cm_(Ru)^(-2)which is almost five and three times higher than that of hcp-Ru and commercial Pt/C,respectively,which is attributed to the optimized binding strength of adsorbed hydroxide intermediate derived from tailored electronic structure through W doping and phase engineering.Moreover,this strategy can also be applied to synthesize other metastable fcc-RuCr and fcc-RuMo alloys with enhanced HOR performances.
基金supported by the grants from the Research Grants Council of the Hong Kong Special Administrative Region,China (Project No. 16205721)Guangdong Basic and Applied Basic Research Foundation (Project No.2021A1515011815)Poly U Start-up Fund (Project No. 1-BDC4)。
文摘Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in alkaline media.In this work,an efficient HER electrocatalyst with hetero-interfacial metal-metal oxide structure was constructed through a redox solid phase reaction(SPR) strategy.During the annealing process under Ar atmosphere,RuO_(2) and WS_(2)in RuO_(2)/WS_(2)precursor were converted to Ru nanoparticles(NPs) and WO3in situ,where tiny Ru NPs and oxygen vacancies were uniformly distributed onto the newly formed WO3nanosheets.Different characterization techniques were adopted to confirm the successful formation of Ru/WO_(3)electrocatalyst(RWOC).The optimized RWOC sample annealed at 400℃ exhibited the low overpotential value of 13 mV at a current density of 10 mA cm^(-2)and strong durability under the alkaline condition.Density functional theoretical calculations further revealed that the promoted adsorption/desorption rate of reaction intermediates and the accelerated kinetics of HER process were deduced to the synergistic effect between Ru and WO_(3)in electrocatalyst.This work provides a feasible method to fabricate highly efficient HER electrocatalysts.
基金National Natural Science Foundation of China,Grant/Award Number:22179005National Key Research and Development Program of China,Grant/Award Number:2018YFC1900102。
文摘The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.
基金financially supported by the National Natural Science Foundation of China(202102007,21978147 and 21935001)the Fundamental Research Funds for the Central Universities(buctrc202112)。
文摘Selective reductive amination of carbonyl compounds with high activity is very essential for the chemical and pharmaceutical industry,but scarcely successful paradigm was reported via efficient photocatalytic reactions.Herein,the ultrasmall Ru nanoclusters(~0.9 nm)were successfully fabricated over P25 support with positive charged Ru^(δ+)species at the interface.A new route was developed to achieve the furfural(FAL)to furfurylamine(FAM)by coupling the light-driven reductive amination and hydrogen transfer of ethanol over this type catalyst.Strikingly,the photocatalytic activity and selectivity are strongly dependent on the particle size and electronic structure of Ruthenium.The Ru^(δ+)species at the interface promote the formation of active imine intermediates;moreover,the Ru nanoclusters facilitate the separation efficiency of electrons and holes as well as accelerate the further hydrogenation of imine intermediates to product primary amines.In contrast Ru particles in larger nanometer size facilitate the formation of the furfuryl alcohol and excessive hydrogenation products.In addition,the coupling byproducts can be effectively inhibited via the construction of sub-nanocluster.This study offers a new path to produce the primary amines from biomass-derived carbonyl compounds over hybrid semiconductor/metal-clusters photocatalyst via light-driven tandem catalytic process.
基金This work was financially supported by the National Natural Science Foundation of China (52122308,21905253,51973200)the Natural Science Foundation of Henan (202300410372).
文摘The defect-free structure of Mo-based materials is a“double-edged sword”,which endows the material with excellent stability,but limits its chemical versatility and application in electrochemical hydrogen evolution reaction(HER).Carbon doping engineering is an attractive strategy to effectively improve the performance of Mo-based catalyst and maintain their stability.Herein,we report a cross-linked porous carbon-doped MoO_(2)(C–MoO_(2))-based catalyst Ru/C–MoO_(2) for electrochemical HER,which is prepared by the convenient redox solid-phase reaction(SPR)of porous RuO_(2)/Mo_(2)C composite precursor.Theoretical studies reveal that due to the presence of carbon atoms,the electronic structure of C–MoO_(2) has been properly adjusted,and the loaded small Ru nanoparticles provide a fast water dissociation rate and moderate H adsorption strength.In electrochemical studies under a pH-universal environment,Ru/C–MoO_(2) electrocatalyst exhibits a low overpotential at a current density of 10 mA cm^(-2) and has a low Tafel slope.Meanwhile,Ru/C-MoO_(2) has excellent stability for more than 100 h at an initial current density of 100 mA cm^(-2).
文摘氮化硅是一种良好的载体,具有较高的水热稳定性和机械稳定性,其表面的氨基基团能够较好地锚定金属,显著提高金属分散度。但是,商品氮化硅比表面积较低,对金属分散作用仍然有限。因此,以自制的高比表面积氮化硅(Si_(3)N_(4))为载体,通过浸渍法制备了不同Ru负载量(质量分数分别为0.5%、1.0%和2.0%)的催化剂(分别为0.5%Ru/Si_(3)N_(4)、1.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)),并以商品氮化硅(Si_(3)N_(4)-C)为载体制备了2.0%Ru/Si_(3)N_(4)-C催化剂作为对照组。表征了催化剂的理化性质,测试了其在300℃、0.1 MPa下的CO_(2)加氢反应活性。结果显示,与Si_(3)N_(4)-C相比,Si_(3)N_(4)的比表面积较高(502 m^(2)/g),Si_(3)N_(4)作为载体显著提高了金属分散度,降低了金属粒径,催化剂暴露出更多的活性位点。0.5%Ru/Si_(3)N_(4)的金属粒径较小,展现出强的H_(2)吸附能力,H难以解吸,抑制了中间物种CO加氢生成CH_(4)。随着Ru负载量增加,金属粒径增大,催化剂的CH_(4)选择性更好。Ru/Si_(3)N_(4)系列催化剂中,2.0%Ru/Si_(3)N_(4)的CH_(4)选择性较高(98.8%)。空速为10000 m L/(g·h)时,0.5%Ru/Si_(3)N_(4)的CO选择性为88.2%。与2.0%Ru/Si_(3)N_(4)相比,2.0%Ru/Si_(3)N_(4)-C的金属粒径更大,活性位点较少,活性更低。2.0%Ru/Si_(3)N_(4)和2.0%Ru/Si_(3)N_(4)-C的CO_(2)转化率分别为53.1%和9.2%。Si_(3)N_(4)有效提高了金属分散度,提高了催化剂的CO_(2)加氢反应活性;通过调控Ru负载量控制催化剂金属粒径,可实现对产物CO或CH_(4)选择性的调控。
基金the financial support from the National Natural Science Foundation of China (Nos. 22178181 and 21876091)the Natural Science Foundation of Tianjin (No. 21JCZDJC00180)+1 种基金the Fundamental Research Funds for the Central Universities (Nankai University (No. 63213075))Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-06)。
文摘Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.
基金supported by institutional program grants from the Korea Institute of Science and Technology and Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20224C10300020)“Carbon to X Project”(2020M3H7A1098229)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea+1 种基金supported by the National Research Council of Science&Technology(NST)grant by the Korean government(MSIT)(No.CAP21011-100)National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2093467)。
文摘Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts.
文摘The catalytic hydrogenation of D-glucose over a 3 wt% Ru/C catalyst was studied varying the operating conditions in mild conditions range to optimize the obtention of D-sorbitol. The stirring speed, temperature, pressure, and initial glucose concentration were varied between 250 - 700 rpm, 343 - 383 K, 0.5 - 2 MPa, and 0.033 - 0.133 M, respectively. To verify the absence of mass transport limitations, the diffusion of reagents in the gas-liquid interface, the liquid-solid interface, and the internal diffusion in the particles were evaluated. Under the operating conditions studied, the reaction rate showed an order with respect to H<sub>2</sub> of 0.586 and with respect to glucose of 0.406. The kinetic data were adjusted using 3 general models and 19 different sub-models based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics. Model 3a was the best one interpreting the aqueous phase hydrogenation of glucose (both reagents competitively adsorbed on the catalyst). The H<sub>2</sub> adsorption is dissociative and the rate-limiting step is the surface chemical reaction.
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.62001460,31971368,12202461,and 22104148)the Guangdong Regional Joint Funds for Young Scientists(Grant Nos.2020A1515110201 and 2020A1515110368)+2 种基金Guangdong Provincial General Funding(Grant No.2021A1515220156)Guangdong Basic and Applied Basic Research Funding-Regional Joint Fund(Grant No.2020B1515120040)Shenzhen Science and Technology Research Funding(Grant Nos.JSGG20201103153801005,JSGG20191115141601721,ZDSYS20220527171406014,JCYJ20220818101412027,JCYJ20200109115635440,and JCYJ 20200109115408041).
文摘Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.