An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments envi...An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component.展开更多
In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is...In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is established based on Matlab/Simulink sofware. The power spectral density (PSD) and the weighted root mean square (RMS) of acceleration responses of the vertical driver s seat, the cab s pitch and roll angle are chosen as objective functions in low-frequency range. Experimental investigation is also used to verify the accuracy of the model. The influence of the damping coefficients of the AHM on the cab s ride quality is analyzed, and damping coefficients are then optimized via a genetic algorithm program. The research results show that the cab s rubber mounts added by the AHM clearly improve the ride quality under various operating conditions. Particularly, with the optimal damping coefficients of the front-end mounts c a 1,2 = 1 500 N · s/m and of the rear-end mounts c a 3,4 =2 335 N · s/m, the weighted RMS values of the driver s seat, the cab s pitch and roll angle are reduced by 22.2%, 18.8%, 58.7%, respectively. Under the condition of the vehicle travelling, with the optimal damping coefficients of c a 1,2 = 1 500 N · s/m and c a 3,4 =1 882 N · s/m, the maximum PSD values of the driver s seat, the cab s pitch and roll angle are clearly decreased by 36.7%, 54.7% and 50.6% under the condition of the vehicle working.展开更多
基金Universiti Kuala Lumpurthe Ministry of Higher Education,Malaysia for providing the scholarship award and financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from Ministry of Higher Education,Malaysia
文摘An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01)
文摘In order to evaluate the ride quality of the soil compactor cab supplemented by the auxiliary hydraulic mounts (AHM), a nonlinear dynamic model of the soil compactor interacting with the off-road deformable terrain is established based on Matlab/Simulink sofware. The power spectral density (PSD) and the weighted root mean square (RMS) of acceleration responses of the vertical driver s seat, the cab s pitch and roll angle are chosen as objective functions in low-frequency range. Experimental investigation is also used to verify the accuracy of the model. The influence of the damping coefficients of the AHM on the cab s ride quality is analyzed, and damping coefficients are then optimized via a genetic algorithm program. The research results show that the cab s rubber mounts added by the AHM clearly improve the ride quality under various operating conditions. Particularly, with the optimal damping coefficients of the front-end mounts c a 1,2 = 1 500 N · s/m and of the rear-end mounts c a 3,4 =2 335 N · s/m, the weighted RMS values of the driver s seat, the cab s pitch and roll angle are reduced by 22.2%, 18.8%, 58.7%, respectively. Under the condition of the vehicle travelling, with the optimal damping coefficients of c a 1,2 = 1 500 N · s/m and c a 3,4 =1 882 N · s/m, the maximum PSD values of the driver s seat, the cab s pitch and roll angle are clearly decreased by 36.7%, 54.7% and 50.6% under the condition of the vehicle working.