In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic car...In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.展开更多
Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, ...Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.展开更多
Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and m...Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and maintaining border security. With remote sensing tech- nologies, we analyzed the rubber distribution pattern and spatial-temporal dynamic; with GIS and a newly proposed index of Planted Intensity (PI), we further quantified the impacts and limits of topographical factors on rubber plantation in the border region of China, Laos and Myanmar (BRCLM) between 1980 and 2010. The results showed that: (1) As the dominant land use type in this border region, the acreage of rubber plantation was 6014 km2 in 2010, accounting for 8.17% of the total area. Viewing from the rubber plantation structure, the ratio of mature- (〉10 year) and young rubber plantation (〈 10 year) was 5:7. (2) From 1980 to 2010, rubber plantation expanded significantly in BRCLM, from 705 km2 to 6014 km2, nearly nine times. The distribution characteristics of rubber plantation varied from concentrated toward dispersed, from border inside to outside, and expanded further in all directions with Jinghong City as the center. (3) Restricted by the topographical factors, more than 4/5 proportion of rubber plantation concentrated in the appropriate elevation gradients between 600 and 1000 m, rarely occurred in elevations beyond 1200 m in BRCLM. Nearly 2/3 of rubber plantation concentrated on slopes of 8^-25~, rarely distributed on slopes above 35~. Rubber plantation was primarily distributed in south and east aspects, relatively few in north and west aspects. Rubber planted intensity displayed the similar distribution trend. (4) Comparative studies of rubber plantation in different countries showed that there was a remarkable increase in area at higher elevations and steeper slopes in China, while there were large appropriate topog- raphical gradients for rubber plantation in Laos and Myanmar which benefited China for rubber trans-boundary expansion. (5) Rubber plantation in BRCLM will definitely expend cross borders of China to the territories of Laos and Myanmar, and the continuous expansion in the border region of China will be inevitable.展开更多
基金Supported by Strategic Priority Research Program,CAS(XDA05050601-01-25)Basic Scientific Research Project of Central Science and Technology Institute(163002-2011013)Project of Danzhou Investigation&Experiment Station of Tropical Crops Ministry of Agriculture~~
文摘In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.
文摘Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.
基金National Natural Science Foundation of China, No.41271117 Strategy of Science and Technology Planning Project of Institute of Geographic Sciences and Natural Resources Research, CAS, No.2012SJ008
文摘Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and maintaining border security. With remote sensing tech- nologies, we analyzed the rubber distribution pattern and spatial-temporal dynamic; with GIS and a newly proposed index of Planted Intensity (PI), we further quantified the impacts and limits of topographical factors on rubber plantation in the border region of China, Laos and Myanmar (BRCLM) between 1980 and 2010. The results showed that: (1) As the dominant land use type in this border region, the acreage of rubber plantation was 6014 km2 in 2010, accounting for 8.17% of the total area. Viewing from the rubber plantation structure, the ratio of mature- (〉10 year) and young rubber plantation (〈 10 year) was 5:7. (2) From 1980 to 2010, rubber plantation expanded significantly in BRCLM, from 705 km2 to 6014 km2, nearly nine times. The distribution characteristics of rubber plantation varied from concentrated toward dispersed, from border inside to outside, and expanded further in all directions with Jinghong City as the center. (3) Restricted by the topographical factors, more than 4/5 proportion of rubber plantation concentrated in the appropriate elevation gradients between 600 and 1000 m, rarely occurred in elevations beyond 1200 m in BRCLM. Nearly 2/3 of rubber plantation concentrated on slopes of 8^-25~, rarely distributed on slopes above 35~. Rubber plantation was primarily distributed in south and east aspects, relatively few in north and west aspects. Rubber planted intensity displayed the similar distribution trend. (4) Comparative studies of rubber plantation in different countries showed that there was a remarkable increase in area at higher elevations and steeper slopes in China, while there were large appropriate topog- raphical gradients for rubber plantation in Laos and Myanmar which benefited China for rubber trans-boundary expansion. (5) Rubber plantation in BRCLM will definitely expend cross borders of China to the territories of Laos and Myanmar, and the continuous expansion in the border region of China will be inevitable.