This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broa...This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line, it records a 5 × 10^-11τ-1/2 (τ〈500 s) frequency stability with a table-top system in a primary experiment. The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption, 90 cm^3 volume and 10^-12τ-1/2 short-term frequency stability.展开更多
We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-ty...We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software.The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of87 Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made.展开更多
This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process b...This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos 10574141 and 10675162)
文摘This paper studies a miniature low power consumption laser-pumped atom vapour cell clock scheme. Pumping ^87Rb with a vertical cavity surface emitting laser diode pump and locking the laser frequency on a Doppler-broadened spectral line, it records a 5 × 10^-11τ-1/2 (τ〈500 s) frequency stability with a table-top system in a primary experiment. The study reveals that the evaluated scheme is at the level of 2.7 watts power consumption, 90 cm^3 volume and 10^-12τ-1/2 short-term frequency stability.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174015)
文摘We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software.The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of87 Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10604057 and 10874193)the National High-Tech Programme (Grant No. 2006AA12Z311)the National Basic Research Programme of China (Grant No. 2005CB724506)
文摘This paper reports an experiment on laser cooling of STRb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.