In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with...In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with common heavy-tailed distribution function F and finite mean μ ∈R^+, {N(n); n ≥0} be a sequence of negative binomial distributed random variables with a parameter p C (0, 1), n ≥ 0, let {M(n); n ≥ 0} be a Poisson process with intensity λ 〉 0. Suppose {N(n); n ≥ 0}, {Xn; n≥1} and {M(n); n ≥ 0} are mutually independent. Write S(n) =N(n)∑i=1 Xi-cM(n).Under the assumption F ∈ C, we prove some large deviation results. These results can be applied to certain problems in insurance and finance.展开更多
文摘In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with common heavy-tailed distribution function F and finite mean μ ∈R^+, {N(n); n ≥0} be a sequence of negative binomial distributed random variables with a parameter p C (0, 1), n ≥ 0, let {M(n); n ≥ 0} be a Poisson process with intensity λ 〉 0. Suppose {N(n); n ≥ 0}, {Xn; n≥1} and {M(n); n ≥ 0} are mutually independent. Write S(n) =N(n)∑i=1 Xi-cM(n).Under the assumption F ∈ C, we prove some large deviation results. These results can be applied to certain problems in insurance and finance.