Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated f...Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated for rule base generation for fuzzy and fuzzy grey-box temperature estimation. Experimental data were collected from a real- life mill and three different sets were randomly drawn. The first set was used for rule-generation, the second set was used for training those systems with learning capabilities, while the third one was used for validation. The perform- ance of the developed systems was evaluated by five performance measures applied over the prediction error with the validation set and was compared with that of the empirical rule-base fuzzy systems and the physical model used in plant. The results show that the fuzzy C-means generated rule-bases improve temperature estimation; however, the best results are obtained when fuzzy C-means algorithm, grey-box modeling and learning functions are combined. Application of fuzzy C-means rule generation brings improvement on performance of up to 72%.展开更多
文摘Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated for rule base generation for fuzzy and fuzzy grey-box temperature estimation. Experimental data were collected from a real- life mill and three different sets were randomly drawn. The first set was used for rule-generation, the second set was used for training those systems with learning capabilities, while the third one was used for validation. The perform- ance of the developed systems was evaluated by five performance measures applied over the prediction error with the validation set and was compared with that of the empirical rule-base fuzzy systems and the physical model used in plant. The results show that the fuzzy C-means generated rule-bases improve temperature estimation; however, the best results are obtained when fuzzy C-means algorithm, grey-box modeling and learning functions are combined. Application of fuzzy C-means rule generation brings improvement on performance of up to 72%.