In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling struct...In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.展开更多
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan...Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.展开更多
A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t...A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.展开更多
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model...Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.展开更多
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
A machine-learning approach was developed for automated building of knowledgebases for soil resources mapping by using a classification tree to generate knowledge from trainingdata. With this method, building a knowle...A machine-learning approach was developed for automated building of knowledgebases for soil resources mapping by using a classification tree to generate knowledge from trainingdata. With this method, building a knowledge base for automated soil mapping was easier than usingthe conventional knowledge acquisition approach. The knowledge base built by classification tree wasused by the knowledge classifier to perform the soil type classification of Longyou County,Zhejiang Province, China using Landsat TM bi-temporal images and CIS data. To evaluate theperformance of the resultant knowledge bases, the classification results were compared to existingsoil map based on a field survey. The accuracy assessment and analysis of the resultant soil mapssuggested that the knowledge bases built by the machine-learning method was of good quality formapping distribution model of soil classes over the study area.展开更多
Considering the efficiency and veracity of rules based optical proximity correction (OPC),the importance of rules in rules based OPC is pointed out.And how to select,to construct and to apply more concise and practi...Considering the efficiency and veracity of rules based optical proximity correction (OPC),the importance of rules in rules based OPC is pointed out.And how to select,to construct and to apply more concise and practical rules base is disscussed.Based on those ideas,four primary rules are suggested.Some data resulted in rules base are shown in table.The patterns on wafer are clearly improved by applying these rules to correct mask.OPCL,the automatic construction of the rules base is an important part of the whole rules based OPC system.展开更多
Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Be...Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Belief rule base with attribute reliability(BRB-r)is an expert system that provides a useful way for dealing with these three problems.In BRB-r,once the input information is unreliable,the reliability of belief rule is influenced,which further influences the accuracy of its output belief degree.On the other hand,when many system characteristics exist,the belief rule combination will explode in BRB-r,and the BRB-r based safety assessment model becomes too complicated to be applied.Thus,in this paper,to balance the complexity and accuracy of the safety assessment model,a new safety assessment model based on BRB-r with considering belief rule reliability is developed for the first time.In the developed model,a new calculation method of the belief rule reliability is proposed with considering both attribute reliability and global ignorance.Moreover,to reduce the influence of uncertainty of expert knowledge,an optimization model for the developed safety assessment model is constructed.A case study of safety assessment of liquefied natural gas(LNG)storage tank is conducted to illustrate the effectiveness of the new developed model.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites...In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites such a design of websites, security of websites and familiarity of website influence customers trust in online transactions. This paper presents an application of expert system on trust in electronic commerce. Based on experts’ judgment, a frame of work was proposed. The proposed model applies ANFIS and Mamdani inference fuzzy system to get the desired results and then results of two methods were compared. Two questionnaires were used in this study. The first questionnaire was developed for e-commerce experts, and the second one was designed for the customers of electronic websites. Based on AHP method, Expert Choice software was used to determine the priority of factors in the first questionnaire, and MATLAB and Excel were used for developing the fuzzy rules. Finally, the fuzzy logical kit was used to analyze the generated factors in the model. Our study findings show that trust in EC transactions is strongly mediated by perceived security.展开更多
Alzheimer’s disease(AD)is a very complex disease that causes brain failure,then eventually,dementia ensues.It is a global health problem.99%of clinical trials have failed to limit the progression of this disease.The ...Alzheimer’s disease(AD)is a very complex disease that causes brain failure,then eventually,dementia ensues.It is a global health problem.99%of clinical trials have failed to limit the progression of this disease.The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms.Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction.In this regard,the need becomes more urgent for biomarker-based detection.A key issue in understanding AD is the need to solve complex and high-dimensional datasets and heterogeneous biomarkers,such as genetics,magnetic resonance imaging(MRI),cerebrospinal fluid(CSF),and cognitive scores.Establishing an interpretable reasoning system and performing interoperability that achieves in terms of a semantic model is potentially very useful.Thus,our aim in this work is to propose an interpretable approach to detect AD based on Alzheimer’s disease diagnosis ontology(ADDO)and the expression of semantic web rule language(SWRL).This work implements an ontology-based application that exploits three different machine learning models.These models are random forest(RF),JRip,and J48,which have been used along with the voting ensemble.ADNI dataset was used for this study.The proposed classifier’s result with the voting ensemble achieves a higher accuracy of 94.1%and precision of 94.3%.Our approach provides effective inference rules.Besides,it contributes to a real,accurate,and interpretable classifier model based on various AD biomarkers for inferring whether the subject is a normal cognitive(NC),significant memory concern(SMC),early mild cognitive impairment(EMCI),late mild cognitive impairment(LMCI),or AD.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
The software defects are managed through the knowledge base,and defect management is upgraded from the data level to the knowledge level. The rule knowledge is mined from bug data based on a rule-based knowledge extra...The software defects are managed through the knowledge base,and defect management is upgraded from the data level to the knowledge level. The rule knowledge is mined from bug data based on a rule-based knowledge extraction model,and the appropriate strategy is configured in the strategy layer to predict software defects. The model is extracted by direct association rules and extended association rules,which improve the prediction rate of related defects and the efficiency of software testing.展开更多
The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of exp...The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of expression variations such as neutral, surprise, happy, sad, fear, disgust and angry. During enrollment process, principle component analysis (PCA) detects facial regions on the input image. The detected facial region is converted into fuzzy domain data to make decision during recognition process. The Haar wavelet transform extracts features from the detected facial regions. The Nested Hidden markov model is employed to train these features and each feature of face image is considered as states in a Markov chain to perform learning among the features. The maximum likelihood for the input image was estimated by using Baum Welch algorithm and these features were kept on database. During recognition process, the expression and occlusion varied face image is taken as the test image and maximum likelihood for test image is found by following same procedure done in enrollment process. The matching score between maximum likelihood of input image and test image is computed and it is utilized by fuzzy rule based method to decide whether the test image belongs to authorized or unauthorized. The proposed work was tested among several expression varied and occluded face images of JAFFE and AR datasets respectively.展开更多
There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from u...There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.展开更多
Presents the proposition for verification of consistency based upon an accurate Petri net built for rules using the reachability concept and status equation of Petri net, and illustrates the specific steps of this app...Presents the proposition for verification of consistency based upon an accurate Petri net built for rules using the reachability concept and status equation of Petri net, and illustrates the specific steps of this application with a typical example.展开更多
In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantag...In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantages of our system are threefold. First, it aims at proposing a strong and unified rule form based on first order structure that permits the representation and management of all the types of rules and their quality via some characteristics. Second, it leads to increase the quality of rules which conditions the quality of data cleaning. Third, it uses an appropriate knowledge acquisition process, which is the weakest task in the current rule and knowledge based systems. As several research works have shown that data cleaning is rather driven by domain knowledge than by data, we have identified and analyzed the properties that distinguish knowledge and rules from data for better determining the most components of the proposed system. In order to illustrate our system, we also present a first experiment with a case study at health sector where we demonstrate how the system is useful for the improvement of data quality. The autonomy, extensibility and platform-independency of the proposed rule management system facilitate its incorporation in any system that is interested in data quality management.展开更多
The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many exi...The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.展开更多
The research in the area of automated negotiation systems is going on in many universities. This research is mainly focused on making a practically feasible, faster and reliable E-negotiation system. The ongoing work ...The research in the area of automated negotiation systems is going on in many universities. This research is mainly focused on making a practically feasible, faster and reliable E-negotiation system. The ongoing work in this area is happening in the laboratories of the universities mainly for training and research purpose. There are number of negotiation systems such as Henry, Kasbaah, Bazaar, Auction Bot, Inspire, and Magnet. Our research is based on making an agent software for E-negotiation which will give faster results and also is secure and flexible. The negotiation partners and contents between the service providers change frequently. The negotiation process can be transformed into rules and cases. Using these features, a new automated negotiation model for agent integrating rule based and case based reasoning can be derived. We propose an E-negotiation system, in which all product information and multiple agent details are stored on the cloud. An E-negotiation agent acts as a negotiator. Agent has user’s details and their requirements for a particular product. It will check rules based data whether any rule is matching with the user requirement. An agent will see case based data to check any similar negotiation case matching to the user requirement. If a case matches with user requirement, then agent will start the negotiation process using case based data. If any rule related requirement is found in the rule base data, then agent will start the negotiation process using rule based data. If both rules based data and cases based data are not matching with the user requirement, then agent will start the negotiation process using Bilateral Negotiation model. After completing negotiation process, agent gives feedback to the user about whether negotiation is successful or not. The product details, rule based data, and case based data will be stored on the cloud. So that system automatically becomes flexible. We also compare E-negotiation agent automated negotiation and behavior prediction system to prove that using rule based and case based approaches system should become fast.展开更多
基金supported by the Natural Science Foundation of China underGrant 61833016 and 61873293the Shaanxi OutstandingYouth Science Foundation underGrant 2020JC-34the Shaanxi Science and Technology Innovation Team under Grant 2022TD-24.
文摘In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.
基金supported by the Natural Science Foundation of China (No.61833016)the Shaanxi Outstanding Youth Science Foundation (No.2020JC-34)the Shaanxi Science and Technology Innovation Team (No.2022TD-24).
文摘Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736,in part by the Teaching Reform Project of Higher Education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038,and in part by the Graduate Academic Innovation Project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19。
文摘A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.
基金This work was supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038+2 种基金in part by the innovation practice project of college students in Heilongjiang Province under Grant Nos.202010231009,202110231024,and 202110231155in part by the basic scientific research business expenses scientific research projects of provincial universities in Heilongjiang Province Grant Nos.XJGZ2021001in part by the Education and teaching reform program of 2021 in Heilongjiang Province under Grant No.SJGY20210457.
文摘Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
基金Project supported by the National Natural Science Foundation of China(Nos.40101014 and 40001008).
文摘A machine-learning approach was developed for automated building of knowledgebases for soil resources mapping by using a classification tree to generate knowledge from trainingdata. With this method, building a knowledge base for automated soil mapping was easier than usingthe conventional knowledge acquisition approach. The knowledge base built by classification tree wasused by the knowledge classifier to perform the soil type classification of Longyou County,Zhejiang Province, China using Landsat TM bi-temporal images and CIS data. To evaluate theperformance of the resultant knowledge bases, the classification results were compared to existingsoil map based on a field survey. The accuracy assessment and analysis of the resultant soil mapssuggested that the knowledge bases built by the machine-learning method was of good quality formapping distribution model of soil classes over the study area.
文摘Considering the efficiency and veracity of rules based optical proximity correction (OPC),the importance of rules in rules based OPC is pointed out.And how to select,to construct and to apply more concise and practical rules base is disscussed.Based on those ideas,four primary rules are suggested.Some data resulted in rules base are shown in table.The patterns on wafer are clearly improved by applying these rules to correct mask.OPCL,the automatic construction of the rules base is an important part of the whole rules based OPC system.
基金supported in part by the National Natural Science Foundation of China(61833016,61751304,61873273,61702142,61773388)the Key Research and Development Plan of Hainan(ZDYF2019007)Shaanxi Outstanding Youth Science Foundation(2020JC-34)。
文摘Safety assessment is one of important aspects in health management.In safety assessment for practical systems,three problems exist:lack of observation information,high system complexity and environment interference.Belief rule base with attribute reliability(BRB-r)is an expert system that provides a useful way for dealing with these three problems.In BRB-r,once the input information is unreliable,the reliability of belief rule is influenced,which further influences the accuracy of its output belief degree.On the other hand,when many system characteristics exist,the belief rule combination will explode in BRB-r,and the BRB-r based safety assessment model becomes too complicated to be applied.Thus,in this paper,to balance the complexity and accuracy of the safety assessment model,a new safety assessment model based on BRB-r with considering belief rule reliability is developed for the first time.In the developed model,a new calculation method of the belief rule reliability is proposed with considering both attribute reliability and global ignorance.Moreover,to reduce the influence of uncertainty of expert knowledge,an optimization model for the developed safety assessment model is constructed.A case study of safety assessment of liquefied natural gas(LNG)storage tank is conducted to illustrate the effectiveness of the new developed model.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
文摘In new environments of trading, customer's trust is vital for the extended progress and development of electronic commerce. This paper proposes that in addition to known factors of electronic commerce B2C websites such a design of websites, security of websites and familiarity of website influence customers trust in online transactions. This paper presents an application of expert system on trust in electronic commerce. Based on experts’ judgment, a frame of work was proposed. The proposed model applies ANFIS and Mamdani inference fuzzy system to get the desired results and then results of two methods were compared. Two questionnaires were used in this study. The first questionnaire was developed for e-commerce experts, and the second one was designed for the customers of electronic websites. Based on AHP method, Expert Choice software was used to determine the priority of factors in the first questionnaire, and MATLAB and Excel were used for developing the fuzzy rules. Finally, the fuzzy logical kit was used to analyze the generated factors in the model. Our study findings show that trust in EC transactions is strongly mediated by perceived security.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1011198).
文摘Alzheimer’s disease(AD)is a very complex disease that causes brain failure,then eventually,dementia ensues.It is a global health problem.99%of clinical trials have failed to limit the progression of this disease.The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms.Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction.In this regard,the need becomes more urgent for biomarker-based detection.A key issue in understanding AD is the need to solve complex and high-dimensional datasets and heterogeneous biomarkers,such as genetics,magnetic resonance imaging(MRI),cerebrospinal fluid(CSF),and cognitive scores.Establishing an interpretable reasoning system and performing interoperability that achieves in terms of a semantic model is potentially very useful.Thus,our aim in this work is to propose an interpretable approach to detect AD based on Alzheimer’s disease diagnosis ontology(ADDO)and the expression of semantic web rule language(SWRL).This work implements an ontology-based application that exploits three different machine learning models.These models are random forest(RF),JRip,and J48,which have been used along with the voting ensemble.ADNI dataset was used for this study.The proposed classifier’s result with the voting ensemble achieves a higher accuracy of 94.1%and precision of 94.3%.Our approach provides effective inference rules.Besides,it contributes to a real,accurate,and interpretable classifier model based on various AD biomarkers for inferring whether the subject is a normal cognitive(NC),significant memory concern(SMC),early mild cognitive impairment(EMCI),late mild cognitive impairment(LMCI),or AD.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
文摘The software defects are managed through the knowledge base,and defect management is upgraded from the data level to the knowledge level. The rule knowledge is mined from bug data based on a rule-based knowledge extraction model,and the appropriate strategy is configured in the strategy layer to predict software defects. The model is extracted by direct association rules and extended association rules,which improve the prediction rate of related defects and the efficiency of software testing.
文摘The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of expression variations such as neutral, surprise, happy, sad, fear, disgust and angry. During enrollment process, principle component analysis (PCA) detects facial regions on the input image. The detected facial region is converted into fuzzy domain data to make decision during recognition process. The Haar wavelet transform extracts features from the detected facial regions. The Nested Hidden markov model is employed to train these features and each feature of face image is considered as states in a Markov chain to perform learning among the features. The maximum likelihood for the input image was estimated by using Baum Welch algorithm and these features were kept on database. During recognition process, the expression and occlusion varied face image is taken as the test image and maximum likelihood for test image is found by following same procedure done in enrollment process. The matching score between maximum likelihood of input image and test image is computed and it is utilized by fuzzy rule based method to decide whether the test image belongs to authorized or unauthorized. The proposed work was tested among several expression varied and occluded face images of JAFFE and AR datasets respectively.
文摘There are fundamentally two different communication media in wireless underground sensor networks. The first of these is a solid medium where the sensor nodes are buried underground and wirelessly transmit data from underground to aboveground. The second is an underground medium such as tunnel, cave etc. and the data is transmitted from underground to the aboveground through partially solid medium. The quality of communication is greatly influenced by the humidity of the soil in both environments. The placement of wireless underground sensor nodes at hard-to-reach locations makes energy efficient work compulsory. In this paper, rule based collector station selection scheme is proposed for lossless data transmission in underground sensor networks. In order for sensor nodes to transmit energy-efficient lossless data, rulebased selection operations are carried out with the help of fuzzy logic. The proposed wireless underground sensor network is simulated using Riverbed software, and fuzzy logic-based selection scheme is implemented utilizing Matlab software. In order to evaluate the performance of the sensor network;the parameters of delay, throughput and energy consumption are investigated. Examining performance evaluation results, it is seen that average delay and maximum throughput are accomplished in the proposed underground sensor network. Under these conditions, it has been shown that the most appropriate collector station selection decision is made with the aim of minimizing energy consumption.
文摘Presents the proposition for verification of consistency based upon an accurate Petri net built for rules using the reachability concept and status equation of Petri net, and illustrates the specific steps of this application with a typical example.
文摘In this paper, we propose a rule management system for data cleaning that is based on knowledge. This system combines features of both rule based systems and rule based data cleaning frameworks. The important advantages of our system are threefold. First, it aims at proposing a strong and unified rule form based on first order structure that permits the representation and management of all the types of rules and their quality via some characteristics. Second, it leads to increase the quality of rules which conditions the quality of data cleaning. Third, it uses an appropriate knowledge acquisition process, which is the weakest task in the current rule and knowledge based systems. As several research works have shown that data cleaning is rather driven by domain knowledge than by data, we have identified and analyzed the properties that distinguish knowledge and rules from data for better determining the most components of the proposed system. In order to illustrate our system, we also present a first experiment with a case study at health sector where we demonstrate how the system is useful for the improvement of data quality. The autonomy, extensibility and platform-independency of the proposed rule management system facilitate its incorporation in any system that is interested in data quality management.
文摘The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.
文摘The research in the area of automated negotiation systems is going on in many universities. This research is mainly focused on making a practically feasible, faster and reliable E-negotiation system. The ongoing work in this area is happening in the laboratories of the universities mainly for training and research purpose. There are number of negotiation systems such as Henry, Kasbaah, Bazaar, Auction Bot, Inspire, and Magnet. Our research is based on making an agent software for E-negotiation which will give faster results and also is secure and flexible. The negotiation partners and contents between the service providers change frequently. The negotiation process can be transformed into rules and cases. Using these features, a new automated negotiation model for agent integrating rule based and case based reasoning can be derived. We propose an E-negotiation system, in which all product information and multiple agent details are stored on the cloud. An E-negotiation agent acts as a negotiator. Agent has user’s details and their requirements for a particular product. It will check rules based data whether any rule is matching with the user requirement. An agent will see case based data to check any similar negotiation case matching to the user requirement. If a case matches with user requirement, then agent will start the negotiation process using case based data. If any rule related requirement is found in the rule base data, then agent will start the negotiation process using rule based data. If both rules based data and cases based data are not matching with the user requirement, then agent will start the negotiation process using Bilateral Negotiation model. After completing negotiation process, agent gives feedback to the user about whether negotiation is successful or not. The product details, rule based data, and case based data will be stored on the cloud. So that system automatically becomes flexible. We also compare E-negotiation agent automated negotiation and behavior prediction system to prove that using rule based and case based approaches system should become fast.