To improve the performance of the ontology matching process, a more efficient ontology matching algorithm, which can effectively eliminate unnecessary operations of matching entities, is proposed. By the theoretical a...To improve the performance of the ontology matching process, a more efficient ontology matching algorithm, which can effectively eliminate unnecessary operations of matching entities, is proposed. By the theoretical analysis and proof, a set of matching rules are summarized for depicting inherent relations among matching results of entities. Based on these rules, the proposed algorithm can reuse the matching results of two entities to directly determine the matching results of their adjacent entities. Thereby, redundant operations of matching adjacent entities can be avoided, which can improve the performance of the whole matching process. The experimental results show that, compared with related algorithms, the proposed algorithm has high matching accuracy and can remarkably reduce the consuming time of the whole matching process. So, the proposed algorithm is more competent for the large-scale ontology matching which often occurs in the practical heterogeneous web resources integration project.展开更多
To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based...To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching.In this algorithm,the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences.These kinds of metaphor sentences are saved in the pattern library in advance.The main process of this algorithm is up-down searching and bottom-up backtracking revising.The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library.Finally,the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library.Hence,accurate dependency relationships can be achieved through this algorithm.展开更多
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho...Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.展开更多
This paper proposes a negative selection with neighborhood representation named as neighborhood negative selection algorithm.This algorithm employs a new representation method which uses the fully adjacent but mutuall...This paper proposes a negative selection with neighborhood representation named as neighborhood negative selection algorithm.This algorithm employs a new representation method which uses the fully adjacent but mutually disjoint neighborhoods to present the self samples and detectors.After normalizing the normal samples into neighborhood shape space,the algorithm uses a special matching rule similar as Hamming distance to train mature detectors at the training stage and detect anomaly at the detection stage.The neighborhood negative selection algorithm is tested using KDD CUP 1999 dataset.Experimental results show that the algorithm can prevent the negative effect of the dimension of shape space,and provide a more accuracy and stable detection performance.展开更多
基金R & D Infrastructure and Facility Development(No2005DKA64201)the National High Technology Research and De-velopment Program of China (863Program) (No2006AA12Z202)
文摘To improve the performance of the ontology matching process, a more efficient ontology matching algorithm, which can effectively eliminate unnecessary operations of matching entities, is proposed. By the theoretical analysis and proof, a set of matching rules are summarized for depicting inherent relations among matching results of entities. Based on these rules, the proposed algorithm can reuse the matching results of two entities to directly determine the matching results of their adjacent entities. Thereby, redundant operations of matching adjacent entities can be avoided, which can improve the performance of the whole matching process. The experimental results show that, compared with related algorithms, the proposed algorithm has high matching accuracy and can remarkably reduce the consuming time of the whole matching process. So, the proposed algorithm is more competent for the large-scale ontology matching which often occurs in the practical heterogeneous web resources integration project.
基金Project(50474033)supported by the National Natural Science Foundation of China
文摘To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching.In this algorithm,the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences.These kinds of metaphor sentences are saved in the pattern library in advance.The main process of this algorithm is up-down searching and bottom-up backtracking revising.The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library.Finally,the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library.Hence,accurate dependency relationships can be achieved through this algorithm.
基金Supported by the National Natural Science Foundation of China (20476007)
文摘Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 60671049)the Subject Chief Foundation of Harbin (Grant No.2003AFXXJ013)+1 种基金the Education Department Research Foundation of Heilongjiang Province(Grant No. 10541044 and 1151G012)the Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(Grant No. LBH-Q09075)
文摘This paper proposes a negative selection with neighborhood representation named as neighborhood negative selection algorithm.This algorithm employs a new representation method which uses the fully adjacent but mutually disjoint neighborhoods to present the self samples and detectors.After normalizing the normal samples into neighborhood shape space,the algorithm uses a special matching rule similar as Hamming distance to train mature detectors at the training stage and detect anomaly at the detection stage.The neighborhood negative selection algorithm is tested using KDD CUP 1999 dataset.Experimental results show that the algorithm can prevent the negative effect of the dimension of shape space,and provide a more accuracy and stable detection performance.