This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c...This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.展开更多
To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplification...To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.展开更多
Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runne...Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.展开更多
Numerical simulation on Francis turbine runner's welding temperature field and welding stress field is carded out on the base of solving the problem of welding heat source's movement along any spatial routes and the...Numerical simulation on Francis turbine runner's welding temperature field and welding stress field is carded out on the base of solving the problem of welding heat source's movement along any spatial routes and the problem of heat elimination between the complicated blade and air. The evolvement law of welding stress and the distribution of the stress field after welding are obtained. The results indicate that the peak value of the welding residual stress appears on the outlet edge of blade near the contact area between blade and band or blade and crown. Associated with the distribution of the runner's working stress, the invalidation reason of the Francis turbine runner is explained.展开更多
The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper....The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.展开更多
文摘This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.
基金National Basic Research Program of China(973 Program,Grant No.2015CB057301)Research and Innovation in Science and Technology Major Project of Liaoning Province,China(Grant No.201410001)Collaborative Innovation Center of Major Machine Manufacturing in Liaoning Province,China
文摘To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.
基金Comprehensive Health Management Promotion Center of Xihua University(kgl2018-019)Scientific Research Project of the Education Department of Sichuan,China(18ZB0560)National Natural Science Foundation of China(51279172)
文摘Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.
文摘Numerical simulation on Francis turbine runner's welding temperature field and welding stress field is carded out on the base of solving the problem of welding heat source's movement along any spatial routes and the problem of heat elimination between the complicated blade and air. The evolvement law of welding stress and the distribution of the stress field after welding are obtained. The results indicate that the peak value of the welding residual stress appears on the outlet edge of blade near the contact area between blade and band or blade and crown. Associated with the distribution of the runner's working stress, the invalidation reason of the Francis turbine runner is explained.
文摘The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.