期刊文献+
共找到1,011篇文章
< 1 2 51 >
每页显示 20 50 100
Features of Runoff and Sediment Yield of Different Shrub-Grass Combination Modes for Highway Side Slope in Hilly Areas of Central Sichuan Province
1
作者 李妮 陈其兵 谭昌明 《Journal of Landscape Research》 2012年第2期1-4,共4页
[Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken fo... [Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken for example,through sorting out plant species investigated in the route planning,3 indigenous shrub species(Neosinocalamus affinis,Vitex negundo and Coriaria nepalensis) and 3 indigenous herbaceous species(Setaria viridis,Miscanthus floridulus,Artemisia argyi) were selected.Rainfall simulation experiment was adopted to compare runoff and sediment yields of different combination modes and ratios under constant rainfall intensity(20 mm/min).[Result] Different combination modes under constant rainfall intensity all showed better water and soil conservation effects than that of control group did.For example,runoff appeared 1'-4'05"later,sediment yield reduced by 6.56-33.86 g respectively.Among all combination modes,runoff and sediment yield showed great difference after 20 min of constant rainfall,V.negundo+S.viridis had the lowest runoff(1,700 ml) and sediment yield(60.71 g);C nepalensis+A. argyi had the highest runoff(1,920 ml) and sediment yield(84.02 g).[Conclusion] Given the same planting conditions such as side slope and seeding quantity,and also the same planting techniques,in the hilly areas of central Sichuan Province,the combination of V.negundo and S.viridis can greatly improve the water and soil conservation capacity of highway. 展开更多
关键词 HIGHWAY SIDE SLOPE Indigenous SHRUB Runoff yield sediment yield Water and soil Conservation
下载PDF
Effect of grass coverage on sediment yield in the hillslope-gully side erosion system 被引量:15
2
作者 李勉 姚文艺 +2 位作者 丁文峰 杨剑锋 陈江南 《Journal of Geographical Sciences》 SCIE CSCD 2009年第3期321-330,共10页
By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ... By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest. 展开更多
关键词 grass coverage hillslope-gully side erosion system scouring experiment sediment yield
下载PDF
Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS 被引量:11
3
作者 TsouMing-Shu ZHANXiao-yong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期865-867,共3页
Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a wa... Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution(AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management. 展开更多
关键词 annualized agricultural non-point source pollution(AnnAGNPS) GIS sediment yield RUNOFF
下载PDF
Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions 被引量:9
4
作者 TUO Dengfeng XU Mingxiang +1 位作者 ZHAO Yunge GAO Liqian 《Journal of Arid Land》 SCIE CSCD 2015年第5期590-598,共9页
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o... Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region. 展开更多
关键词 sediment yield particle-size distribution fractal dimension wind and water erosion
下载PDF
Simulation of Runoff and Sediment Yield for a Himalayan Watershed Using SWAT Model 被引量:6
5
作者 Sanjay K. Jain Jaivir Tyagi Vishal Singh 《Journal of Water Resource and Protection》 2010年第3期267-281,共15页
Watershed is considered to be the ideal unit for management of the natural resources. Extraction of water-shed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models i... Watershed is considered to be the ideal unit for management of the natural resources. Extraction of water-shed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models is the current trend for hydrologic evaluation of watersheds. The Soil and Water Assessment Tool (SWAT) having an interface with ArcView GIS software (AVSWAT2000/X) was selected for the estimation of runoff and sediment yield from an area of Suni to Kasol, an intermediate watershed of Satluj river, located in Western Himalayan region. The model was calibrated for the years 1993 & 1994 and validated with the observed runoff and sediment yield for the years 1995, 1996 and 1997. The performance of the model was evaluated using statistical and graphical methods to assess the capability of the model in simulating the run-off and sediment yield from the study area. The coefficient of determination (R2) for the daily and monthly runoff was obtained as 0.53 and 0.90 respectively for the calibration period and 0.33 and 0.62 respectively for the validation period. The R2 value in estimating the daily and monthly sediment yield during calibration was computed as 0.33 and 0.38 respectively. The R2 for daily and monthly sediment yield values for 1995 to 1997 was observed to be 0.26 and 0.47. 展开更多
关键词 AVSWATX Calibration Validation Image Processing REMOTE Sensing GIS RUNOFF sediment yield
下载PDF
Modeling and analysis of effects of precipitation and vegetation coverage on runoff and sediment yield in Jinsha River Basin 被引量:6
6
作者 Jun DU Chang-xing SHI Chen-di ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期44-58,共15页
This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applic... This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applicability of the adaptive network-based fuzzy inference system (ANFIS) to simulating annual runoff and sediment yield. Correlation analysis indicates that runoff and sediment yield are positively correlated with the precipitation indices, while negatively correlated with the vegetation indices. Furthermore, the results of stepwise regression show that annual precipitation is the most important factor influencing the variation of runoff, followed by forest coverage, and their contributions to the variation ofrunoffare 69.8% and 17.3%, respectively. For sediment yield, rainfall erosivity is the most important factor, followed by forest coverage, and their contributions to the variation of sediment yield are 49.3% and 24.2%, respectively. The ANFIS model is of high precision in runoff forecasting, with a relative error of less than 5%, but of poor precision in sediment yield forecasting, indicating that precipitation and vegetation coverage can explain only part of the variation of sediment yield, and that other impact factors, such as human activities, should be sufficiently considered as well. 展开更多
关键词 PRECIPITATION vegetation coverage RUNOFF sediment yield adaptive network-basedfuzzy inference system (ANFIS) Jinsha River Basin
下载PDF
The Effect of Grain Size on the Viscosity and Yield Stress of Fine-Grained Sediments 被引量:2
7
作者 Sueng Won JEONG 《Journal of Mountain Science》 SCIE CSCD 2014年第1期31-40,共10页
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size... In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays. 展开更多
关键词 DEBRIS Flow VISCOSITY yield Stress GRAIN Size FINE-GRAINED sedimentS
下载PDF
Material component to non-linear relation between sediment yield and drainage network development:an flume experimental study 被引量:2
8
作者 JIN De-sheng, CHEN Hao, GUO Qing-wu (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期271-281,共11页
This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 8... This paper examines the experimental study on influence of material component to non-linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs I, IV and VI, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The absolute value of delaying ratio of the curve reduces with time running and material fining. It is characterized by substitution of situation to time. 展开更多
关键词 material component NETWORK sediment yield nonlinear relation EXPERIMENT
下载PDF
Water Yield and Sediment Yield Simulations for Teba Catchment in Spain Using SWRRB Model: Ⅱ. Simulation Results 被引量:4
9
作者 ZENG ZHIYUAN and A. M. J. MEIJERINK Collage of Geography, Nanjing Normal University, Nanjing 210097 (China) International Institute for Aerospace Survey and Earth Sciences, P. O. Box 6, 7500A A Enschede (the Netherlands) 《Pedosphere》 SCIE CAS CSCD 2002年第1期49-58,共10页
Simulated results of water yield, sediment yield, surface runoff,subsurface runoff, peak flow, evapo- transipiration, etc., in theTeba catchment, Spain, using SWRRB (Simulator for Water Resources inRural Basins) model... Simulated results of water yield, sediment yield, surface runoff,subsurface runoff, peak flow, evapo- transipiration, etc., in theTeba catchment, Spain, using SWRRB (Simulator for Water Resources inRural Basins) model are presented and the related problems arediscussed. The results showed that water yield And sediment yieldcould be satisfactorily simulated using SWRRB model. The accuracy ofthe annual water Yield simulation in the Teba catchment was up to83.68/100, which implied that this method could be effectively Usedto predict the annual or inter-annual water yield and to realize thequantification of geographic elements And processes of a river basin. 展开更多
关键词 basin management sediment yield soil erosion vegetation index
下载PDF
Soil reinforcement by a root system and its effects on sediment yield in response to concentrated flow in the loess plateau 被引量:3
10
作者 Peng Li Zhanbin Li 《Agricultural Sciences》 2011年第2期86-93,共8页
The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge re... The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge regarding root mor-phology and its impact on soil erosion by water is limited;therefore, detailed analysis of the role that root systems play in controlling soil ero-sion is needed. In this study, stratified runoff scouring at different soil depths in the field was conducted in a grassland area. The results in-dicated that both root biomass and soil wa-ter-stable aggregates decreased as soil depth increased at all three sites, while there was al-most no change in soil bulk density at 1.3g/cm3. Sediment yields under different runoff dis-charge at different sites showed similar trends, and the sediment yield increased as the soil depth increased at all three sites. Further analysis revealed that close relationships ex-isted between root biomass and the amount of water-stable aggregates and soil organic matter content, and that these factors greatly influ-enced soil erosion. Based on the data generated by the experiment, equations describing the relationship between sediment production at different soil depths and root biomass were determined. 展开更多
关键词 ROOT SOIL Properties SOIL EROSION sediment yield LOESS PLATEAU
下载PDF
Estimation of soil erosion and sediment yield in Wadi El Hachem watershed(Algeria)using the RUSLE-SDR approach 被引量:2
11
作者 SAOUD Mohammed MEDDI Mohamed 《Journal of Mountain Science》 SCIE CSCD 2023年第2期367-380,共14页
One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of m... One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed. 展开更多
关键词 RUSLE sediment delivery ratio Soil loss sediment yield Wadi El Hachem Algeria
下载PDF
Modelling the Effects of Land-use Change on Runoff and Sediment Yield in the Weicheng River Watershed, Southwest China 被引量:3
12
作者 ZHANG Xiao-ke FAN Ji-hui CHENG Gen-wei 《Journal of Mountain Science》 SCIE CSCD 2015年第2期434-445,共12页
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil cons... As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield. 展开更多
关键词 Land-use change Hydrological modelling Reforestation scenario Runoff and sediment yield
下载PDF
A METROD PREDICTING RESPONSE OF SEDIMENT YIELD TO POSSIBIE CHANGE OF PRECIPITATION DUE TO GLOBAL GREENHOUSE WARMING:AN EXAMPIE FROM NORTH FRINGE OF THE LOESS PLATEAU, CHINA 被引量:1
13
作者 Xu Jiongxin(Institute of Geography, CAS, Beijing 100101 People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z2期159-172,共14页
Starting from the supposition of time-space substitution, the Langbein-Schumm's Law was applied to deal with response of fluvial erosion System to the changes in mean annual Precipitation induced by global green-h... Starting from the supposition of time-space substitution, the Langbein-Schumm's Law was applied to deal with response of fluvial erosion System to the changes in mean annual Precipitation induced by global green-house warming. As a result, a simple method was put forward to predict change in sediment yield, with Ningxia Hui Autonomous Region in the northern fringe of the Loess Plateau of China as an example. Results show that, even the change in mean annual precipitation is the same, the direction and magnitude of the resultant chang in sediment yteld would be quite different in fferent physico-geographical zones. When mean annual precipitation is increased, sediment yield in arid or semi-arid areas with a mean anntal Peripitation of less than 400 mm will be increased, while sediment yield in sub-humid or humid areas with a mean annual precipitation of more than 400 mm will be decreased.Additionally, the complex response of fluvial erosion system in time series due to the lag of change in vegetation behind the changn in precipitation has also been qualitatively discussed in this paper. 展开更多
关键词 sediment yield Langbein-Schumm's Law prediction of changed sediment yield global green-house warming complex response
下载PDF
Forecasting of Runoff and Sediment Yield Using Artificial Neural Networks 被引量:1
14
作者 Avinash AGARWAL R. K. RAI Alka UPADHYAY 《Journal of Water Resource and Protection》 2009年第5期368-375,共8页
Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling techniq... Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models. 展开更多
关键词 Artificial NEURAL NETWORK Forecasting RUNOFF sediment yield
下载PDF
Impact of Climate Change and Deforestation on Stream Discharge and Sediment Yield in Phu Luong Watershed, Viet Nam 被引量:3
15
作者 D.B. Phan C.C. Wu S.C. Hsieh 《Journal of Environmental Science and Engineering》 2011年第8期1063-1072,共10页
The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Nort... The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Northern Viet Nam. Among the three climate change scenarios B 1, B2, and A2, representing low, medium, and high levels of greenhouse gas emission, respectively were set up for Viet Nam, the B2 scenario was selected for this study. Two land use scenarios (S1-2030 and $2-2050) were formulated combination with climate change in WSAT simulation. In B2 climate change scenario, mean temperature increases 0.7℃(2030) and 1.3 ℃ (2050); annual rainfall increases 2.1% (2030) and 3.80% (2050) respect to baseline scenario. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation. 展开更多
关键词 SWAT climate change DEFORESTATION sediment yield stream discharge
下载PDF
Impacts of precipitation variation and soil and water conservation measures on runoff and sediment yield in the Loess Plateau Gully Region, China 被引量:9
16
作者 XIA Lu SONG Xiao-yu +3 位作者 FU Na MENG Chun-fang LI Huai-you LI Yao-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2028-2041,共14页
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation... The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau. 展开更多
关键词 Quantitative impact Trend analysis Evolution characteristics Runoff and sediment yield Rainfall Land use change
下载PDF
Assessing the Impact of Land-Use Land-Cover Change on Stream Water and Sediment Yields at a Watershed Level Using SWAT 被引量:1
17
作者 Wubishet Tadesse Stephanie Whitaker +1 位作者 William Crosson Constance Wilson 《Open Journal of Modern Hydrology》 2015年第3期68-85,共18页
Flint River watershed is located in northern Alabama and southern Tennessee, USA and is home to several species of rare, threatened, or endangered plants and animals in a rapidly urbanizing area. Dominant land uses ar... Flint River watershed is located in northern Alabama and southern Tennessee, USA and is home to several species of rare, threatened, or endangered plants and animals in a rapidly urbanizing area. Dominant land uses are forest and agricultural, with row crops and livestock production as major farm enterprises. Soil and Water Assessment Tool (SWAT), a deterministic hydrologic model that can predict hydrologic conditions over various temporal and spatial scales, was used to simulate the hydrologic response of the watershed to land-use/land cover (LULC) change. Analysis between observed and predicted stream flow demonstrated that the initial SWAT model run requires calibration of stream parameters in order to give a more accurate output from the model. The calibration was performed with sequential uncertainty fitting, ver. 2 (SUFI-2) in the SWAT Calibration Uncertainty Program. After calibration, stream sediment yield values were compared by sub-basin between a current (2001) and three future (2030) land use scenarios, in order to identify areas in the watershed that were the most susceptible to increased sediment yield in the future. The future growth scenarios (smart, plan and sprawl) were created using the ArcGIS extension, Prescott Spatial Growth Model. Sub-basins with the greatest sensitivity for larger sediment yields were identified and prioritized for conservation efforts. 展开更多
关键词 SWAT sediment yield PRESCOTT Spatial Growth Model LULC
下载PDF
Impact of Land-Use Practices on Sediment Yield in the Dhrabi Watershed of Pakistan 被引量:2
18
作者 Muhammad Nadeem Iqbal Theib Y. Oweis +2 位作者 Muhammad Ashraf Bashir Hussain Abdul 《Journal of Environmental Science and Engineering(A)》 2012年第3期406-420,共15页
Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated w... Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion. 展开更多
关键词 Soil erosion sediment yield RAINFALL RUNOFF vegetative cover soil conservation structures.
下载PDF
Principal Denudation Processes and Their Contribution to Fluvial Suspended Sediment Yields in the Upper Yangtze River Basin and Volga River Basin 被引量:1
19
作者 VALENTIN Golosov ZHANG Xin-bao +2 位作者 HE Xiu-bin TANG Qiang ZHOU Ping 《Journal of Mountain Science》 SCIE CSCD 2015年第1期101-122,共22页
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China a... This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation. 展开更多
关键词 Land denudation Anthropogenicdisturbance Suspended sediment yield UpperYangtze River Volga River
下载PDF
Impacts of land disturbance and restoration on runoff production and sediment yield in the Chinese Loess Plateau 被引量:1
20
作者 AI Ning WEI Tianxing +3 位作者 ZHU Qingke QIANG Fangfang MA Huan QIN Wei 《Journal of Arid Land》 SCIE CSCD 2017年第1期76-86,共11页
Land disturbance and land restoration are important factors influencing runoff production and sediment yield in the semi-arid loess regions of China. This study compared the runoff production and sediment yield during... Land disturbance and land restoration are important factors influencing runoff production and sediment yield in the semi-arid loess regions of China. This study compared the runoff production and sediment yield during the early stage after land disturbance(ESLD) with those during restoring stage after land disturbance(RSLD). Grey relational analysis was used to analyse the importance of each one of the influencing factors(vegetation, rainfall, soil and topography) in affecting the runoff production and sediment yield. Our results showed that during ESLD, topography was the most critical factor controlling the runoff production, while soil was the most important factor controlling the sediment yield. During RSLD, vegetation was more important in affecting runoff production, while rainfall was more important in affecting sediment yield. In additional, this study demonstrated that both the runoff production and the sediment yield can be effectively reduced by restoring vegetation on severely-disturbed lands, thus providing an important theoretical basis for better implementations of the Grain for Green Program. Our results revealed that the vegetation types of Hippophae rhamnoides+Pinus tabulaeformis and H. rhamnoides are better plant selections for land restoration in this area, especially for relatively gentle slopes(i.e., less than 20 degrees). 展开更多
关键词 land disturbance/ restoration grey relational analysis RUNOFF sediment yield Loess Plateau
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部