It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-f...It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period ofa forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.展开更多
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions i...The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.展开更多
业界提出利用路由保护算法来解决网络中的故障问题,然而已有的路由保护算法存在4个方面的问题:1)无法应对网络中所有可能的单故障情形;2)需要额外辅助机制的协助;3)不支持增量部署;4)每个结点存储多个到达目的地址的备份下一跳.提出一...业界提出利用路由保护算法来解决网络中的故障问题,然而已有的路由保护算法存在4个方面的问题:1)无法应对网络中所有可能的单故障情形;2)需要额外辅助机制的协助;3)不支持增量部署;4)每个结点存储多个到达目的地址的备份下一跳.提出一种基于转发图的域内路由保护算法(an intradomain routing protection algorithm based on forwarding graph,RPBFG)来解决这4个问题.首先建立了以最大化故障保护率为目标、以转发图包含反向最短路径树为约束条件的路由保护模型;然后提出了利用遗传算法构造满足上述目标的转发图;最后根据构造的转发图计算出所有结点到达目的结点的备份下一跳.在11个真实拓扑结构中比较了RPBFG,NPC,U-turn,MARA-MA,MARA-SPE在故障保护率和路径拉伸度的性能.实验结果表明,RPBFG可以应对网络中所有可能的单故障;在平均路径拉伸度方面,RPBFG比NPC,U-turn,MARA-MA,MARA-SPE分别降低了0.11%,0.72%,37.79%,36.26%.展开更多
针对在弱电网下直驱风电机组引起的次同步振荡(subsynchronousoscillation,SSO)现象,提出基于一阶总扰动偏差控制的微分前馈线性自抗扰控制器(linear active disturbance rejection control,LADRC),采用全改进LADRC控制策略抑制SSO现象...针对在弱电网下直驱风电机组引起的次同步振荡(subsynchronousoscillation,SSO)现象,提出基于一阶总扰动偏差控制的微分前馈线性自抗扰控制器(linear active disturbance rejection control,LADRC),采用全改进LADRC控制策略抑制SSO现象(“全”是指电压外环、电流内环以及PLL锁相环3个环节都采用相应的控制)。首先,建立直驱风电机组并网数学模型;其次,结合风电机组并网系统对改进LADRC控制器进行设计并对其进行特性分析,该控制器相较于传统LADRC,不仅减小系统的跟踪误差且抗干扰性能更强;最后,通过PSCAD/EMTDC仿真软件将本文策略与全PI、全传统LADRC进行仿真对比。结果表明:相较于全传统LADRC,本文方法在降低1.62%超调量的同时,缩短0.129 s系统调节时间,有效抑制SSO现象并且具有较好的适应性。展开更多
伺服与扰动抑制是时滞积分系统最基本的控制问题,对其进行控制难度较大。文中提出一种基于直接综合法和多主导极点配置法的微分先行PID(Proportional-Integral-Derivative)整定方法,这种方法通过比较串联滤波器与时滞积分被控对象组成...伺服与扰动抑制是时滞积分系统最基本的控制问题,对其进行控制难度较大。文中提出一种基于直接综合法和多主导极点配置法的微分先行PID(Proportional-Integral-Derivative)整定方法,这种方法通过比较串联滤波器与时滞积分被控对象组成的特征方程与实际期望的特征方程的系数,将三阶主导极点置于-1/λ处,并将二阶非主导极点置于-5/λ处(λ为调整参数),从而获得期望的特征方程。以实现期望的鲁棒性方式获得设计的控制器参数,通过选择不同的调优参数获取相应的Ms(Maximum sensitivity)值,在参数具有标称性的限定条件下拟合出关于Ms和调优参数的关系曲线,给出整定规则的解析形式。PIPTD(Pure Integral Plus Time Delay system)、DIPTD(Double Integral Plus Time Delay system)和FOPTDI(First-Order Plus Time Delay Integral System)系统的仿真结果表明,IAE(Integral Absolute Error)指标平均可降低35.79%,TV(Total Variation)指标平均可降低18.97%。展开更多
基金National Natural Science Foundation of ChinaUnder Grant No.50408003
文摘It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period ofa forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.
基金National Natural Science Foundation of China Under Grant No. 50538050 and No. 50608024
文摘The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these nearfield effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.
文摘业界提出利用路由保护算法来解决网络中的故障问题,然而已有的路由保护算法存在4个方面的问题:1)无法应对网络中所有可能的单故障情形;2)需要额外辅助机制的协助;3)不支持增量部署;4)每个结点存储多个到达目的地址的备份下一跳.提出一种基于转发图的域内路由保护算法(an intradomain routing protection algorithm based on forwarding graph,RPBFG)来解决这4个问题.首先建立了以最大化故障保护率为目标、以转发图包含反向最短路径树为约束条件的路由保护模型;然后提出了利用遗传算法构造满足上述目标的转发图;最后根据构造的转发图计算出所有结点到达目的结点的备份下一跳.在11个真实拓扑结构中比较了RPBFG,NPC,U-turn,MARA-MA,MARA-SPE在故障保护率和路径拉伸度的性能.实验结果表明,RPBFG可以应对网络中所有可能的单故障;在平均路径拉伸度方面,RPBFG比NPC,U-turn,MARA-MA,MARA-SPE分别降低了0.11%,0.72%,37.79%,36.26%.
文摘伺服与扰动抑制是时滞积分系统最基本的控制问题,对其进行控制难度较大。文中提出一种基于直接综合法和多主导极点配置法的微分先行PID(Proportional-Integral-Derivative)整定方法,这种方法通过比较串联滤波器与时滞积分被控对象组成的特征方程与实际期望的特征方程的系数,将三阶主导极点置于-1/λ处,并将二阶非主导极点置于-5/λ处(λ为调整参数),从而获得期望的特征方程。以实现期望的鲁棒性方式获得设计的控制器参数,通过选择不同的调优参数获取相应的Ms(Maximum sensitivity)值,在参数具有标称性的限定条件下拟合出关于Ms和调优参数的关系曲线,给出整定规则的解析形式。PIPTD(Pure Integral Plus Time Delay system)、DIPTD(Double Integral Plus Time Delay system)和FOPTDI(First-Order Plus Time Delay Integral System)系统的仿真结果表明,IAE(Integral Absolute Error)指标平均可降低35.79%,TV(Total Variation)指标平均可降低18.97%。