A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-Ir...A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).展开更多
Experimental results are presented which allow comparison of the electrochemical performance of RuO 2/Ti, Ru 0 3 Sn 0 7 O 2/Ti and Ru 0 3 V 0 7 O 2/Ti catalysts prepared on a titanium substrate by thermal decompositio...Experimental results are presented which allow comparison of the electrochemical performance of RuO 2/Ti, Ru 0 3 Sn 0 7 O 2/Ti and Ru 0 3 V 0 7 O 2/Ti catalysts prepared on a titanium substrate by thermal decomposition from respective precursors. The highest activity for chlorine evolution is observed on the Ru 0 3 V 0 7 O 2/Ti electrode, lower on Ru 0 3 Sn 0 7 O 2/Ti and least on RuO 2/Ti. Voltammograms obtained in the polarisable region are used to characterize the different electrodes. Further more an analysis of the catalytic activity and reaction kinetics of the developed electrodes in NaCl are presented.展开更多
Density functional theory calculations are carried out to identify various configurations of oxygen molecules adsorbed on the Au-doped RuO2(110) surface. The binding energy calculations indicate that O2 molecules are ...Density functional theory calculations are carried out to identify various configurations of oxygen molecules adsorbed on the Au-doped RuO2(110) surface. The binding energy calculations indicate that O2 molecules are chemically adsorbed on the coordinatively unsaturated Ru(Rucus) sites and the bridge oxygen vacancies on the Au sites. Transition state calculations show that O^* can exist on the Rucus site by O2^* dissociation and diffusion. The calculations of the reaction path of CO indicate that the reaction energy barrier of CO adsorbed on Au with lattice oxygen decreases to 0.28 eV and requires less energy than that on the undoped structure.展开更多
In this paper,the nanometer TiO2-SiO2 composite oxide,which has a higher surface area,was prepared by sol-gel.The surface area and structural property of composite oxide were examined.The results indicated that nanome...In this paper,the nanometer TiO2-SiO2 composite oxide,which has a higher surface area,was prepared by sol-gel.The surface area and structural property of composite oxide were examined.The results indicated that nanometer particles of the composite oxide were obtained.When nSi∶nTi ratio was equal to 4.6,the surface area was larger comparing with pure TiO2 and pure SiO2.Tris(2,2’-bipyridine) ruthenium(Ⅱ) absorbed on TiO2-SiO2 composite oxide was sensitive to oxygen.展开更多
以乙二胺、乙醇胺和CO2为原料,Ru/Al2O3为催化剂,水为溶剂一步法合成1-(2-氨乙基)-2-咪唑烷酮(AEI)。通过单因素实验和正交实验考察了反应温度、反应时间、CO2压力、溶剂水用量和催化剂负载量等反应条件对乙二胺转化率和AEI收率的影响,...以乙二胺、乙醇胺和CO2为原料,Ru/Al2O3为催化剂,水为溶剂一步法合成1-(2-氨乙基)-2-咪唑烷酮(AEI)。通过单因素实验和正交实验考察了反应温度、反应时间、CO2压力、溶剂水用量和催化剂负载量等反应条件对乙二胺转化率和AEI收率的影响,分析了CO2在AEI合成过程中的作用机理。实验结果表明,在反应温度220℃、CO2压力8 MPa、反应时间10 h、负载1%(w)Ru/Al2O3催化剂和溶剂水7 m L条件下,AEI收率可达70.25%;增加CO2压力有利于提高乙二胺转化率和中间产物2-咪唑烷酮的生成,但CO2压力的增加增强了CO2与2-咪唑烷酮上氨基的作用,阻碍了氨基和乙醇胺上羟基脱水生成AEI,降低了AEI收率。展开更多
Ru/Ce-Zr catalysts were prepared by impregnation of Ru on the hydrothermally synthesized Ce-Zr mixed oxide with different molar ratio of Ce/Zr.The resultant products were systematically characterized by inductively co...Ru/Ce-Zr catalysts were prepared by impregnation of Ru on the hydrothermally synthesized Ce-Zr mixed oxide with different molar ratio of Ce/Zr.The resultant products were systematically characterized by inductively coupled plasma(ICP),X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive spectrometry(EDS),H2-temperature programmed reduction(H2-TPR),NH3-temperature programmed desorption(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).It was proved by H2-TPR and NH3-TPD that the introduction of Ru can improve the activity of oxygen of catalysts and the presence of Zr contributes to the increments of acid properties of catalysts.When the molar ratio of Ce-Zr was 8:4,the quantity of Ru was 0.9%(mass ratio),and the calcined temperature of catalysts was at 400℃,the removal rate of 90% for trichloroethylene(TCE)was reached at 250℃ for 5360 mg/m^3 TCE and the stability of the catalysts was investigated under the condition.The results showed that the high removal rate can be maintained for at least 90 h,which is promising for industrial application.展开更多
Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure.In this work,a...Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure.In this work,amorphous/crystalline ruthenium oxide(RuO_(2))porous particles with rationally regulated heterophases are successfully prepared by integrating the phase engineering into the porous material synthesis.The resultant defect-rich amorphous/crystalline RuO_(2)porous particles exhibit excellent electrocatalytic performance toward the oxygen evolution reaction,achieving a low overpotential of 165 mV at a current density of 10 mA·cm^(−2)and a high mass activity up to 133.8 mA·cm^(-2)at a low overpotential of 200 mV.This work indicates that the synergistic effect of amorphous/crystalline heterophase and porous structural characteristics enables RuO_(2)to trigger a superior electrocatalytic activity.展开更多
利用硅溶胶的成膜性、纳米二氧化钛-氧化锌大的比表面积及导电胶的粘结性,制备了纳米二氧化钛-氧化锌/硅溶胶/导电胶复合材料,基于此复合材料将联吡啶钌固定到金电极表面,制备了磷酸可待因电化学发光(ECL)传感器。在优化的实验条件(8...利用硅溶胶的成膜性、纳米二氧化钛-氧化锌大的比表面积及导电胶的粘结性,制备了纳米二氧化钛-氧化锌/硅溶胶/导电胶复合材料,基于此复合材料将联吡啶钌固定到金电极表面,制备了磷酸可待因电化学发光(ECL)传感器。在优化的实验条件(800 V负高压、扫描速度100 m V/s,磷酸盐缓冲体系(p H 6.5))下,可待因浓度在1.0×10^-7-1.0×10^-4mol/L范围内与电化学发光强度呈良好的线性关系(r^2=0.9973),检出限为2.56×10^-8mol/L(S/N=3)。传感器表现出良好的重现性与稳定性,连续平行测定1.28×10^-5mol/L可待因溶液10次,发光强度的相对标准偏差(RSD)为2.7%;室温下保存10天后,发光强度为初始值的92%以上。测定可待因药物实际样品的加标回收率在99.3%-102.5%之间。展开更多
Ru has recently been regarded as a promising catalyst for hydrogen oxidation reaction(HOR) and hydrogen evolution reaction(HER) due to its similar binding energy towards *H but lower price compared to Pt.Nevertheless,...Ru has recently been regarded as a promising catalyst for hydrogen oxidation reaction(HOR) and hydrogen evolution reaction(HER) due to its similar binding energy towards *H but lower price compared to Pt.Nevertheless, the quest of high-efficiency Ru-based catalysts for HOR and HER is driven by the current disadvantages including low activity and unsatisfactory stability. Herein, we have fabricated and engineered two-dimensional(2D) Ru-based snow-like nanosheets with Ru/Ru O2interface(Ru/Ru O2SNSs)via a post-annealing treatment. Detailed characterizations and theoretical calculations indicate that the interfacial synergy, which is dependent on the temperature for annealing, can alter the hydrogen binding energy(HBE) and hydroxide binding energy(OHBE), as a result of the enhanced HOR and HER performance. Impressively, the optimal Ru/RuO_(2) SNSs display a mass activity of 9.13 A mgRu^(–1) at an overpotential of 50 m V in 0.1 mol L^(–1) KOH for HOR, which is 65, 304, and 21 times higher than those of Ru SNSs(0.14 A mg_(Ru)^(–1)), RuO_(2) SNSs(0.03 A mg_(Ru)^(–1)), and commercial Pt/C(0.43 A mg_(Ru)^(–1)), respectively.Moreover, Ru/RuO_(2) SNSs display improved HER activity with a low overpotential of 20.2 m V for achieving10 m A cm^(-2)in 1 mol L^(–1)KOH. This work not only provides an efficient catalyst for HOR and HER, but also promotes fundamental research on the fabrication and modification of catalysts in heterogeneous catalysis.展开更多
基金financially supported by the Nature Science Foundation of China (Grant No.U1610106)the Nature Science Foundation of China (Grant No.21703208)
文摘A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).
文摘Experimental results are presented which allow comparison of the electrochemical performance of RuO 2/Ti, Ru 0 3 Sn 0 7 O 2/Ti and Ru 0 3 V 0 7 O 2/Ti catalysts prepared on a titanium substrate by thermal decomposition from respective precursors. The highest activity for chlorine evolution is observed on the Ru 0 3 V 0 7 O 2/Ti electrode, lower on Ru 0 3 Sn 0 7 O 2/Ti and least on RuO 2/Ti. Voltammograms obtained in the polarisable region are used to characterize the different electrodes. Further more an analysis of the catalytic activity and reaction kinetics of the developed electrodes in NaCl are presented.
基金Project supported by the Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2018A0588 and KJ2019A0879)
文摘Density functional theory calculations are carried out to identify various configurations of oxygen molecules adsorbed on the Au-doped RuO2(110) surface. The binding energy calculations indicate that O2 molecules are chemically adsorbed on the coordinatively unsaturated Ru(Rucus) sites and the bridge oxygen vacancies on the Au sites. Transition state calculations show that O^* can exist on the Rucus site by O2^* dissociation and diffusion. The calculations of the reaction path of CO indicate that the reaction energy barrier of CO adsorbed on Au with lattice oxygen decreases to 0.28 eV and requires less energy than that on the undoped structure.
文摘In this paper,the nanometer TiO2-SiO2 composite oxide,which has a higher surface area,was prepared by sol-gel.The surface area and structural property of composite oxide were examined.The results indicated that nanometer particles of the composite oxide were obtained.When nSi∶nTi ratio was equal to 4.6,the surface area was larger comparing with pure TiO2 and pure SiO2.Tris(2,2’-bipyridine) ruthenium(Ⅱ) absorbed on TiO2-SiO2 composite oxide was sensitive to oxygen.
文摘以乙二胺、乙醇胺和CO2为原料,Ru/Al2O3为催化剂,水为溶剂一步法合成1-(2-氨乙基)-2-咪唑烷酮(AEI)。通过单因素实验和正交实验考察了反应温度、反应时间、CO2压力、溶剂水用量和催化剂负载量等反应条件对乙二胺转化率和AEI收率的影响,分析了CO2在AEI合成过程中的作用机理。实验结果表明,在反应温度220℃、CO2压力8 MPa、反应时间10 h、负载1%(w)Ru/Al2O3催化剂和溶剂水7 m L条件下,AEI收率可达70.25%;增加CO2压力有利于提高乙二胺转化率和中间产物2-咪唑烷酮的生成,但CO2压力的增加增强了CO2与2-咪唑烷酮上氨基的作用,阻碍了氨基和乙醇胺上羟基脱水生成AEI,降低了AEI收率。
基金the National Natural Science Foundation of China(No.51502115)the Fundamental Research Ftmds for the Central Universities of China(No.JUSRP11708).
文摘Ru/Ce-Zr catalysts were prepared by impregnation of Ru on the hydrothermally synthesized Ce-Zr mixed oxide with different molar ratio of Ce/Zr.The resultant products were systematically characterized by inductively coupled plasma(ICP),X-ray diffraction(XRD),scanning electron microscopy(SEM)/energy dispersive spectrometry(EDS),H2-temperature programmed reduction(H2-TPR),NH3-temperature programmed desorption(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).It was proved by H2-TPR and NH3-TPD that the introduction of Ru can improve the activity of oxygen of catalysts and the presence of Zr contributes to the increments of acid properties of catalysts.When the molar ratio of Ce-Zr was 8:4,the quantity of Ru was 0.9%(mass ratio),and the calcined temperature of catalysts was at 400℃,the removal rate of 90% for trichloroethylene(TCE)was reached at 250℃ for 5360 mg/m^3 TCE and the stability of the catalysts was investigated under the condition.The results showed that the high removal rate can be maintained for at least 90 h,which is promising for industrial application.
文摘Imposing phase engineering to porous materials is promising to realize outperforming electrocatalytic performances by taking advantages of the merits of porous nanoarchitecture and heterophase structure.In this work,amorphous/crystalline ruthenium oxide(RuO_(2))porous particles with rationally regulated heterophases are successfully prepared by integrating the phase engineering into the porous material synthesis.The resultant defect-rich amorphous/crystalline RuO_(2)porous particles exhibit excellent electrocatalytic performance toward the oxygen evolution reaction,achieving a low overpotential of 165 mV at a current density of 10 mA·cm^(−2)and a high mass activity up to 133.8 mA·cm^(-2)at a low overpotential of 200 mV.This work indicates that the synergistic effect of amorphous/crystalline heterophase and porous structural characteristics enables RuO_(2)to trigger a superior electrocatalytic activity.
文摘利用硅溶胶的成膜性、纳米二氧化钛-氧化锌大的比表面积及导电胶的粘结性,制备了纳米二氧化钛-氧化锌/硅溶胶/导电胶复合材料,基于此复合材料将联吡啶钌固定到金电极表面,制备了磷酸可待因电化学发光(ECL)传感器。在优化的实验条件(800 V负高压、扫描速度100 m V/s,磷酸盐缓冲体系(p H 6.5))下,可待因浓度在1.0×10^-7-1.0×10^-4mol/L范围内与电化学发光强度呈良好的线性关系(r^2=0.9973),检出限为2.56×10^-8mol/L(S/N=3)。传感器表现出良好的重现性与稳定性,连续平行测定1.28×10^-5mol/L可待因溶液10次,发光强度的相对标准偏差(RSD)为2.7%;室温下保存10天后,发光强度为初始值的92%以上。测定可待因药物实际样品的加标回收率在99.3%-102.5%之间。
基金supported by the National Key R&D Program of China(2020YFB1505802)the Ministry of Science and Technology of China(2017YFA0208200,2016YFA0204100)+4 种基金the National Natural Science Foundation of China(22025108,U21A20327,and22121001)China Postdoctoral Science Foundation(2020M682083)Guangdong Provincial Natural Science Fund for Distinguished Young Scholars(2021B1515020081)Start-up Support from Xiamen University and the Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices(20195010002)。
文摘Ru has recently been regarded as a promising catalyst for hydrogen oxidation reaction(HOR) and hydrogen evolution reaction(HER) due to its similar binding energy towards *H but lower price compared to Pt.Nevertheless, the quest of high-efficiency Ru-based catalysts for HOR and HER is driven by the current disadvantages including low activity and unsatisfactory stability. Herein, we have fabricated and engineered two-dimensional(2D) Ru-based snow-like nanosheets with Ru/Ru O2interface(Ru/Ru O2SNSs)via a post-annealing treatment. Detailed characterizations and theoretical calculations indicate that the interfacial synergy, which is dependent on the temperature for annealing, can alter the hydrogen binding energy(HBE) and hydroxide binding energy(OHBE), as a result of the enhanced HOR and HER performance. Impressively, the optimal Ru/RuO_(2) SNSs display a mass activity of 9.13 A mgRu^(–1) at an overpotential of 50 m V in 0.1 mol L^(–1) KOH for HOR, which is 65, 304, and 21 times higher than those of Ru SNSs(0.14 A mg_(Ru)^(–1)), RuO_(2) SNSs(0.03 A mg_(Ru)^(–1)), and commercial Pt/C(0.43 A mg_(Ru)^(–1)), respectively.Moreover, Ru/RuO_(2) SNSs display improved HER activity with a low overpotential of 20.2 m V for achieving10 m A cm^(-2)in 1 mol L^(–1)KOH. This work not only provides an efficient catalyst for HOR and HER, but also promotes fundamental research on the fabrication and modification of catalysts in heterogeneous catalysis.