MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can ...CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t...Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.展开更多
Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct intera...Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)...The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.展开更多
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ...Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.展开更多
The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination b...The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.展开更多
A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an A...A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an Ar atmosphere, without bases or sacrificial reagents. In-situ XANES measurements suggest that the active Ru species involved is composed of partially oxidized Ru metal.展开更多
The bimetallic catalysts prepared from SiO_2-supported Ru-Co,Ru- Fe and Ru-Mo carbonyl clusters exhibited high yields and selectivities towards oxygenates such as C_1-C_5 from CO+H_2,in contrast to the catalysts prepa...The bimetallic catalysts prepared from SiO_2-supported Ru-Co,Ru- Fe and Ru-Mo carbonyl clusters exhibited high yields and selectivities towards oxygenates such as C_1-C_5 from CO+H_2,in contrast to the catalysts prepared from homometallic and bimetallic Ru,Ru-Ni,Ru-Rh,Ru-Mn,and Ru- Cr carbonyl clusters.The FTIR investigation revealed that the 1584 cm^(-1) species plays an important role in the formation of oxygenates in CO hydrogenation,which is possibly assigned to surface formyl species.展开更多
The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts inclu...The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.展开更多
Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a muc...Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a much improved electroconductivity.Furthermore,the catalyst contains both Ni-N4sites and highly dispersed metallic Ni nanoclusters,leading to an increased CO_(2)RR currents by two folds.Isotope labelling study and in situ spectroscopic analysis demonstrate that the existence of metallic Ni nanoclusters is the key factor for the activity enhancement and can shift the CO_(2)RR mechanism from being electron transfer(ET)-limited(forming*COO^(-))to concerted proton-electron transfer(CPET)-limited(forming CO).展开更多
Developing advanced oxygen reduction reaction(ORR)electrocatalysts with rapid mass/electron transport as well as conducting relevant kinetics investigations is essential for energy technologies,but both still face ong...Developing advanced oxygen reduction reaction(ORR)electrocatalysts with rapid mass/electron transport as well as conducting relevant kinetics investigations is essential for energy technologies,but both still face ongoing challenges.Herein,a facile approach was reported for achieving the highly dispersed Co nanoparticles anchored hierarchically porous N-doped carbon fibers(Co@N-HPCFs),which were assembled by core-shell MOFs-derived hollow polyhedrons.Notably,the unique one-dimensional(1D)carbon fibers with hierarchical porosity can effectively improve the exposure of active sites and facilitate the electron transfer and mass transfer,resulting in the enhanced reaction kinetics.As a result,the ORR performance of the optimal Co@N-HPCF catalysts remarkably outperforms that of commercial Pt/C in alkaline solution,reaching a limited diffusion current density(J)of 5.85 m A cm^(-2)and a half-wave potential(E_(1/2))of 0.831 V.Particularly,the prepared Co@N-HPCF catalysts can be used as an excellent air-cathode for liquid/solid-state Zn-air batteries,exhibiting great potentiality in portable/wearable energy devices.Furthermore,the reaction kinetic during ORR process is deeply explored by finite element simulation,so as to intuitively grasp the kinetic control region,diffusion control region,and mixing control region of the ORR process,and accurately obtain the relevant kinetic parameters.This work offers an effective strategy and a reliable theoretical basis for the engineering of first-class ORR electrocatalysts with fast electronic/mass transport.展开更多
Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central is...Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.展开更多
Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity...Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity of products pose significant challenges.As an emerging material,bimetallic catalysts have been widely reported for their unique advantages,such as tunable electronic structures,suitable adsorption/desorption of CO_(2) and intermediates,and optimizable d-band centers of active sites through bimetallic synergy.These catalysts provide a remarkable platform for converting CO_(2) into high value-added chemicals.This review comprehensively summarizes recent research advances in bimetallic catalysts for CO_(2)RR.Firstly,the challenges associated with CO_(2)RR,including activity and selectivity are analyzed,followed by a discussion on the unique advantages of bimetallic catalysts.Next,their synthesis strategies are categorized into dual-atom site catalysts(DACs),bimetallic nanoparticles and nanoclusters,binary metal semiconductors,and layered double hydroxides(LDHs).Additionally,advanced characterization techniques of bimetallic catalysts and their applications in CO_(2)RR are thoroughly introduced.Finally,the prospects and challenges for the application of bimetallic materials are highlighted.This review aims to provide inspiration for CO_(2)RR into high-value chemicals and shed light on the research of bimetallic materials.展开更多
One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of p...One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.展开更多
The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. Th...The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. The effects of CeO2 content and reaction temperature on the performance of the Ni-CeO2/Al2O3 catalysts were studied in detail. The results showed that the catalytic performance was strongly dependent on the CeO2 content in Ni-CeO2/Al2O3 catalysts and that the catalysts with 2 wt% CeO2 had the highest catalytic activity among the tested ones at 350 ℃. The XRD and H2-TPR characterizations revealed that the addition of CeO2 decreased the reduction temperature by altering the interaction between Ni and Al2O3, and improved the reducibility of the catalyst. Preliminary stability test of 120 h on stream over the Ni-2CeO2/Al2O3 catalyst at 350 ℃ revealed that the catalyst was much better than the unpromoted one.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
文摘CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金Project(22178392)supported by the National Natural Science Foundation of China。
文摘Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.
基金supported by the Natural Science Foundation of Beijing Municipality (Z200012)the National Natural Science Foundation of China (U21A20328,22225903)the National Key Research and Development Program of China (2021YFB4000601)。
文摘Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.
基金Q.Xu acknowledges financial support from the Natural Science Foundation of Shanghai(20ZR1464000)G.Zeng is grateful for the support from the National Natural Science Foundation of China(21878322,22075309)the Science and Technology Commission of Shanghai(19ZR1479200).The authors also thank the Shanghai Synchrotron Radiation Facility for XAFS measurements at Beamline BL14w1.
文摘The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles.
基金This project was supported by the National Natural Science Foundation of China(U19A2017,22272206,51976143)Natural Science Foundation of Hunan Province(S2021JJMSXM3153).
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.
基金the support of the National Natural Science Foundation of China (20222809, 21978146)TsinghuaFoshan Innovation Special Fund (2021THFS0214)。
文摘Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.
文摘The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.
基金supported by a Grant-in-Aid for Scientific Research (KAKENHI, 20226016)a JSPS Fellowship (KAKENHI, 11J03322) from the Japan Society for the Promotion of Science (JSPS) which supported the work of T K, who is a JSPS Research Fellow (DC2)
文摘A carbon-supported Ru catalyst, Ru/BP2000, is able to simultaneously convert cellobiose into sorbitol and gluconic acid. This reaction occurs as the result of hydrolytic disproportionation in water at 393 K under an Ar atmosphere, without bases or sacrificial reagents. In-situ XANES measurements suggest that the active Ru species involved is composed of partially oxidized Ru metal.
文摘The bimetallic catalysts prepared from SiO_2-supported Ru-Co,Ru- Fe and Ru-Mo carbonyl clusters exhibited high yields and selectivities towards oxygenates such as C_1-C_5 from CO+H_2,in contrast to the catalysts prepared from homometallic and bimetallic Ru,Ru-Ni,Ru-Rh,Ru-Mn,and Ru- Cr carbonyl clusters.The FTIR investigation revealed that the 1584 cm^(-1) species plays an important role in the formation of oxygenates in CO hydrogenation,which is possibly assigned to surface formyl species.
基金supported by the National Science and Technology Support Project of China(2013BAC11B03)the National Natural Science Foundation of China(21401054,21476065,21273067)the Graduate Student Scientific Research Innovation Fund Project of Hunan Province(CX2015B082)~~
文摘The aim of "green chemistry" and "atom economy" is to utilize carbon dioxide and replace harmful reactants such as CO and phosgene for the production of cyclic carbonates. In this paper, metal-free catalysts including organic bases, ionic liquids, supported catalysts, organic copolymers and carbon materials for the synthesis of cyclic carbonates by the cycloaddition of carbon dioxide to epoxides are reviewed. Recent advances in the design of the catalysts and the understanding of the reaction mechanism are summarized and discussed. The synergistic effects of organic bases and hydrogen bond donors, organic bases and nucleophilic anions, hydrogen bond donors and nucleophilic anions and active components and supports are highlighted. The challenge is to develop metal-free catalysts suitable for carbon dioxide capture and fixation. The ultimate goal is to synthesize cyclic carbonates in a flow reactor directly using carbon dioxide from industrial flue gas at ambient temperature and atmospheric pressure. By using synergetic effects, a multi-functional approach can meet the design strategy of metal-free catalysts for carbon dioxide adsorption and activation as well as epoxide ring opening.
基金sponsored by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning and Shanghai Sailing Program(19YF1410600)。
文摘Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a much improved electroconductivity.Furthermore,the catalyst contains both Ni-N4sites and highly dispersed metallic Ni nanoclusters,leading to an increased CO_(2)RR currents by two folds.Isotope labelling study and in situ spectroscopic analysis demonstrate that the existence of metallic Ni nanoclusters is the key factor for the activity enhancement and can shift the CO_(2)RR mechanism from being electron transfer(ET)-limited(forming*COO^(-))to concerted proton-electron transfer(CPET)-limited(forming CO).
基金The financial support of the Natural Science Foundation of China(21802079 and 22075159)the Postdoctoral Science Foundation of China(2018 M642605)+1 种基金the Youth Innovation Team Project of Shandong Provincial Education Department(2019KJC023)the Taishan Scholar Program for L.Zhang(202103058)are appreciated。
文摘Developing advanced oxygen reduction reaction(ORR)electrocatalysts with rapid mass/electron transport as well as conducting relevant kinetics investigations is essential for energy technologies,but both still face ongoing challenges.Herein,a facile approach was reported for achieving the highly dispersed Co nanoparticles anchored hierarchically porous N-doped carbon fibers(Co@N-HPCFs),which were assembled by core-shell MOFs-derived hollow polyhedrons.Notably,the unique one-dimensional(1D)carbon fibers with hierarchical porosity can effectively improve the exposure of active sites and facilitate the electron transfer and mass transfer,resulting in the enhanced reaction kinetics.As a result,the ORR performance of the optimal Co@N-HPCF catalysts remarkably outperforms that of commercial Pt/C in alkaline solution,reaching a limited diffusion current density(J)of 5.85 m A cm^(-2)and a half-wave potential(E_(1/2))of 0.831 V.Particularly,the prepared Co@N-HPCF catalysts can be used as an excellent air-cathode for liquid/solid-state Zn-air batteries,exhibiting great potentiality in portable/wearable energy devices.Furthermore,the reaction kinetic during ORR process is deeply explored by finite element simulation,so as to intuitively grasp the kinetic control region,diffusion control region,and mixing control region of the ORR process,and accurately obtain the relevant kinetic parameters.This work offers an effective strategy and a reliable theoretical basis for the engineering of first-class ORR electrocatalysts with fast electronic/mass transport.
文摘Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.
基金the financial support provided by National Natural Science Foundation of China (22008163)Postgraduate Research & Practice Innovation Program of Jiangsu Province+2 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF202309)Natural Science Research Project of Higher Education Institutions in Jiangsu Province (20KJB150042, 21KJB150038)Natural Science Foundation of Jiangsu Province (BK20231342, BK20210867)。
文摘Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity of products pose significant challenges.As an emerging material,bimetallic catalysts have been widely reported for their unique advantages,such as tunable electronic structures,suitable adsorption/desorption of CO_(2) and intermediates,and optimizable d-band centers of active sites through bimetallic synergy.These catalysts provide a remarkable platform for converting CO_(2) into high value-added chemicals.This review comprehensively summarizes recent research advances in bimetallic catalysts for CO_(2)RR.Firstly,the challenges associated with CO_(2)RR,including activity and selectivity are analyzed,followed by a discussion on the unique advantages of bimetallic catalysts.Next,their synthesis strategies are categorized into dual-atom site catalysts(DACs),bimetallic nanoparticles and nanoclusters,binary metal semiconductors,and layered double hydroxides(LDHs).Additionally,advanced characterization techniques of bimetallic catalysts and their applications in CO_(2)RR are thoroughly introduced.Finally,the prospects and challenges for the application of bimetallic materials are highlighted.This review aims to provide inspiration for CO_(2)RR into high-value chemicals and shed light on the research of bimetallic materials.
基金National Research Foundation of Korea(NRF),Grant/Award Number:2021R1A2C2012685Korea Institute of Energy Technology Evaluation and Planning(KETEP),Grant/Award Number:20203020030010Ministry of Trade,Industry&Energy(MOTIE,Korea),Grant/Award Number:20020400。
文摘One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.
基金supported by the National High Technology Research and Development Program of China(Grant No.2006AA11A189)Science and Technology Commission of Shanghai Municipality(Grant No.07DZ12036,and08DZ12064)Shanghai Pujiang Program(Grant No.08PJ1405900)
文摘The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. The effects of CeO2 content and reaction temperature on the performance of the Ni-CeO2/Al2O3 catalysts were studied in detail. The results showed that the catalytic performance was strongly dependent on the CeO2 content in Ni-CeO2/Al2O3 catalysts and that the catalysts with 2 wt% CeO2 had the highest catalytic activity among the tested ones at 350 ℃. The XRD and H2-TPR characterizations revealed that the addition of CeO2 decreased the reduction temperature by altering the interaction between Ni and Al2O3, and improved the reducibility of the catalyst. Preliminary stability test of 120 h on stream over the Ni-2CeO2/Al2O3 catalyst at 350 ℃ revealed that the catalyst was much better than the unpromoted one.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.