An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400-43500 cm^-1 is ...An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400-43500 cm^-1 is measured, from which spectral information on 38 transitions, such as level position and relative intensity, can be deduced. Combined with information about excitation calibration and the error estimation process, the selection rules enable us to determine the possible values of total angular momentum J for the observed states. The autoionization spectra of atomic europium, belonging to the 4f^76pnl(l = 0, 2) configurations, are systematically investigated by using the three-step laser resonance ionization spectroscopy (RIS) approach. With the ICE scheme, all the experimental spectra of the autoionizing states have nearly symmetric profiles whose peak positions and widths can be easily obtained. A comparison between our results and those from the relevant literature shows that our work not only confirms many reported states, but also discovers 14 bound states and 16 autoionizing states.展开更多
Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization d...Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f76s6p[8Ph/2], 4f76s6p[8P7/2] and 4f76s6p[SP9/2] intermediate states, respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm-1 to 38250 cm-1 and from 38900 cm-1 to 39500 cm-1. The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.展开更多
The radiative lifetimes of the Eu 4f76snp(8^PJ or10^PJ) Rydberg states with J = 5/2 and 11/2 are investigated with a combination of multi-step laser excitation and pulsed electric field ionization, from which their ...The radiative lifetimes of the Eu 4f76snp(8^PJ or10^PJ) Rydberg states with J = 5/2 and 11/2 are investigated with a combination of multi-step laser excitation and pulsed electric field ionization, from which their dependence on the effective principal quantum number is observed. The lifetimes of 21 states are reported along with an evaluation of their experimental uncertainty. The influence of blackbody radiation, due to the oven temperature, on the lifetime of the higher-n states is detected. The non-hydrogen behavior of the investigated states is also observed.展开更多
The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 954, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three...The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 954, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three-step laser excitation, and detected by electric field ionization (EFI) method. Two different kinds of the EFI pulses are applied after laser excitation to observe the possible impacts on the EFI process. The exact EFI ionization thresholds for the 4f76snp Rydberg states can be determined by observing the corresponding EFI spectra. In particular, some structures above the EFI threshold are found in the EFI spectra, which may be interpreted as the effect from black body radiation (BBR). Finally, the scaling law of the EFI threshold for the Eu 4f76snp Rydberg states with the effective quantum number is built.展开更多
We report a theoretical scheme using a B-spline basis set to improve the poor computational accuracy of circular Rydberg states of hydrogen atoms in the intermediate magnetic field. This scheme can produce high accura...We report a theoretical scheme using a B-spline basis set to improve the poor computational accuracy of circular Rydberg states of hydrogen atoms in the intermediate magnetic field. This scheme can produce high accuracy energy levels and valid for an arbitrary magnetic field. Energy levels of hydrogen are presented for circular Rydberg states with azimuthal quantum numbers |m| =10-70 as a function of magnetic field strengths ranging from zero to 2.35 × 10^9 T. The variation of spatial distributions of electron probability densities with magnetic field strengths is discussed and competition between Coulomb and magnetic interactions is illustrated.展开更多
The Stark structures in a cesium atom around n=18 are numerically calculated. The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot, and those with a large ...The Stark structures in a cesium atom around n=18 are numerically calculated. The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot, and those with a large |m| shift downward a little within 1100 V/cm. All components of P states shift downward. Experimental work has been performed in ultracold atomic cesium. Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field, and Stark spectra with |m|=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time. The observed spectra are analyzed in detail. The relative transition probability is calculated. The experimental results are in good agreement with our numerical computation.展开更多
This paper analyzes the energy levels along the even-parity J = 1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. B...This paper analyzes the energy levels along the even-parity J = 1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. Below 59198 cm^-1, a total of 85 and 23 new energy levels, respectively, in the J = 1 and J = 2 series, which cannot be measured previously by experiments, are predicted in this work. Based on the calculated admixture coefficients of each channel, interchannel interactions were discussed in detail. The results are helpful to understand the characteristics of configuration interaction among even-parity levels in Sn I.展开更多
The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecu...The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecules under different laser intensities are obtained. In the slow electron region, the values of kinetic energy of photoelectrons corresponding to peaks 1, 2, 3, and 4 are 0.27, 0.86, 1.16, and 1.6 eV, respectively. With both the kinetic energy and angular distribution of photoelectrons from NH3 molecules, we can confirm that the two-photon excited intermediate Rydberg state is A^1 A2" (v2'=3) state for photoelectron peaks 2, 3, 4, and the three peaks are marked as 1223 (2 + 2), 1123 (2 + 2), and 1023 (2 + 2) multi-photon processes, respectively. Then, peak 1 is found by adding a hexapole between the source chamber and the detection chamber to realize the rotational state selection and beam focusing. Peak 1 is labeled as the 1323 (3 + 1) multi-photon process through the intermediate Rydberg state E^1A1'. The phenomena of channel switching are found in the slow electron kinetic energy distributions. Our calculations and experimental results indicate that the stretching vibrational mode of ammonia molecules varies with channels, while the umbrella vibration does not. In addition, we consider and discuss the ac-Stark effect in a strong laser field. Peaks 5 and 6 are marked as (2 + 2 + 1) and (2 + 2 + 2) above threshold ionization processes in the fast electron region.展开更多
Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this...Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this strategy in combination with femtosecond time-resolved photoelectron imaging. The dark Rydberg S1 and bright valence S2 states are simultaneously excited by two photons of 405 nm, and then ionized by two photons of 800nm. The IC from S2 to S1 is clearly observed and extracted from the time dependence of the higher photoelectron kinetic energy (PKE) component. More importantly, the internal conversions to hot So from directly-prepared S1 and secondarily-populated S1 are unambiguously identified by the time-dependence of the lower PKE component. The average lifetime of the S2 and S1 states is measured to be 29 fs. The internal conversions of S2 to S1, S1 to hot So occur on estimated timescales of 15.4 fs and 38 fs, respectively.展开更多
In this work, a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm...In this work, a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm^-1 and 40800 cm^-1. Comparisons between the results from the two detection techniques enable us to discriminate the Rydberg states from the valence states in the same energy region with the information of level energies, possible J values and their relative intensities. Furthermore, in the experiment two different excitation schemes are designed to obtain the spectra of highly excited even-parity states of the Sm atom. With a detailed analysis of the experimental data, this work not only confirms the results about many spectral data from the literature with different excitation schemes, but also reports new spectral data on 29 Rydberg states and 23 valence states.展开更多
We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two ...We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two intermediate levels,and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency(EIT).Nonlinear spectra are detected as a function of coupling laser frequency.The observed spectra exhibit an enhanced absorption(EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission(ET) signals at detunings to the transition.We define the enhanced absorption(transmission) strength,HEA(HET),and distance between two ET peaks,γET,to describe the spectral feature of the four-level atoms.The enhanced absorption signal HEA is found to have a maximum value when we vary the dressing laser Rabi frequency Ωd,corresponding Rabi frequency is defined as a separatrix point,ΩdSe.The values of ΩdSe and further η=ΩdSe/Ωc are found to depend on the probe and coupling Rabi frequency but not the atomic density.Based on ΩdSe,the spectra can be separated into two regimes,weak and strong dressing ranges,Ωd≤ΩdSe and Ωd≥QdSe,respectively.The spectroscopies display different features at these two regimes.A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.展开更多
We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity(HFLTC).Firstly,the length of HFLTC is sta...We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity(HFLTC).Firstly,the length of HFLTC is stabilized to a commercial frequency reference.Then,the two lasers are locked to this HFLTC using the Pound–Drever–Hall(PDH)method which can narrow the linewidths and stabilize the frequencies of both lasers simultaneously.Finally,the transmitted lasers of HFLTC with each power up to about 100μW,which act as seed lasers,are amplified using the injection locking method for single-atom Rydberg excitation.The linewidths of obtained lasers are narrowed to be less than 1 k Hz,meanwhile the obtained lasers'phase noise around 750 k Hz are suppressed about 30 d B.With the spectrally filtered lasers,we demonstrate a Rabi oscillation between the ground state and Rydberg state of single-atoms in an optical trap tweezer with a decay time of(67±37)μs,which is almost not affected by laser phase noise.We found that the maximum short-term laser frequency fluctuation of a single excitation lasers is at~3.3 k Hz and the maximum long-term laser frequency drift of a single laser is~46 k Hz during one month.Our work develops a stable and repeatable method to provide multiple laser sources of ultra-low phase noise,narrow linewidth,and excellent frequency stability,which is essential for high precision atomic experiments,such as neutral atom quantum computing,quantum simulation,quantum metrology,and so on.展开更多
We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state to the obser-vation of the broadening and shifting of the barium Rydberg level 6s24d 1^D2 by collision with argon. The col...We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state to the obser-vation of the broadening and shifting of the barium Rydberg level 6s24d 1^D2 by collision with argon. The collision broadening and shifting cross sections are measured. This technique is purely optical, and can investigate the pressure dependence of the transverse relaxation rate-P21 between the Rydberg state and an intermediate state, as well as the transverse relaxation rate F20 between the Rydberg state and the ground state.展开更多
We report a sensitive detection of high Rydberg atom with large dipole moment utilizing its deflection near a pair of parallel cylindrical copper rods which are oppositely charged. When the low-field seeking state Ryd...We report a sensitive detection of high Rydberg atom with large dipole moment utilizing its deflection near a pair of parallel cylindrical copper rods which are oppositely charged. When the low-field seeking state Rydberg atoms fly across the gradient electric field formed by the pair of rods, they will be pushed away from the rods while the high-field seeking state ones will be attracted towards the rods. These atoms will form different patterns on an ion imaging system placed downwards at the end of the rods. The spatial distribution of the deflected atoms on the imaging system is also simulated, in good agreement with the experimental results, from which we can deduce the quantum state information of the excited atoms. This state resolvable Rydberg atom detection can be used for the dynamics research of the dipole-dipole interaction between atoms with large dipole moments.展开更多
We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory. Our calculation can ...We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory. Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states. The perturbation effects on line intensity, variation and line profile are discussed. Assignments of the perturber states and autoionizing states are presented.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
Photodissociation dynamics of the CH3 radical at 212.5 nm excitation has been studied experimentally using the H atom Rydberg tagging time-of-flight method. CH3 radicals are produded by photodissociation of CH3I at 26...Photodissociation dynamics of the CH3 radical at 212.5 nm excitation has been studied experimentally using the H atom Rydberg tagging time-of-flight method. CH3 radicals are produded by photodissociation of CH3I at 266 nm. Translational energy distribution and angular distribution for the CH2 product from CH3 photodissociation at different vibrational levels via the 3s Rydberg state have been measured. From these distributions, product J state distributions are obtained for photodissociation of different vibrationally excited CH3 radicals. The effect of parent vibrational as well as rotational excitation on the dissociation dynamics of CH3 is also investigated in detail. Experimental results in this work show that parent vibrational excitation in the umbrella mode has a significant effect on both rotational excitation and angular distribution of the CH2 product, while parent rotational excitation has obvious effect only on the angular distribution of CH2 product.展开更多
Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and...Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and Na are in good agreement with the experimental values within 1% and the branching ratios of the J-resolved partial cross sections are consistent with the recent measurements within the experimental uncertainties. The agreements are impossible to be obtained without adequately taking into account the relativistic effects and the electron correlations together. Therefore, even for the intermediate-Z elements (e.g. Na with Z = 11), the relativistic effects (mainly the spin-orbit interactions) should not be neglected.展开更多
Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical do...Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical double resonance (PFOODR) fluorescence excitation spectroscopy. These new data fill the gap between the low-v levels mainly observed by continuous wave (CW) PFOODR spectroscopy and the high-v levels above the 3s+3d limit observed by pulsed PFOODR with predissociation detection, Molecular constants are fitted below potential shelf around the 3s+3d atomic limit with previously published data (mainly observed by CW PFOODR) and these new data. RKR potential curve has been calculated with the new constants. The constants are: Te= 32127.090 cm^-1,ωe=121.4099(0.20720) cm^-1, Be = 0.116287(0.0002300) cm^-1, Re=3.551 A, An error of the RKR potential curve of J. Chem. Phys. 108, 7707 (1998) is corrected.展开更多
We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various...We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths.We find that the shift of the first above-threshold ionization(ATI) peak is closely related to the interferences between electron wave packets,which are controlled by the laser field and largely independent of the potential.By gradually changing the short-range potential to the long-range Coulomb potential,we show that the long-range potential's effect is mainly to focus the electrons along the laser's polarization and to generate the spider structure by enhancing the rescattering process with the parent ion.In addition,we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10574098 and 10674102)the Natural Science Foundation of Tianjin,China (Grant No.05YFJMJC05200)
文摘An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400-43500 cm^-1 is measured, from which spectral information on 38 transitions, such as level position and relative intensity, can be deduced. Combined with information about excitation calibration and the error estimation process, the selection rules enable us to determine the possible values of total angular momentum J for the observed states. The autoionization spectra of atomic europium, belonging to the 4f^76pnl(l = 0, 2) configurations, are systematically investigated by using the three-step laser resonance ionization spectroscopy (RIS) approach. With the ICE scheme, all the experimental spectra of the autoionizing states have nearly symmetric profiles whose peak positions and widths can be easily obtained. A comparison between our results and those from the relevant literature shows that our work not only confirms many reported states, but also discovers 14 bound states and 16 autoionizing states.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574098, 10674102)the Natural Science Foundation of Tianjin (Grant No 05YFJMJC05200)
文摘Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f76s6p[8Ph/2], 4f76s6p[8P7/2] and 4f76s6p[SP9/2] intermediate states, respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm-1 to 38250 cm-1 and from 38900 cm-1 to 39500 cm-1. The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174218)
文摘The radiative lifetimes of the Eu 4f76snp(8^PJ or10^PJ) Rydberg states with J = 5/2 and 11/2 are investigated with a combination of multi-step laser excitation and pulsed electric field ionization, from which their dependence on the effective principal quantum number is observed. The lifetimes of 21 states are reported along with an evaluation of their experimental uncertainty. The influence of blackbody radiation, due to the oven temperature, on the lifetime of the higher-n states is detected. The non-hydrogen behavior of the investigated states is also observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11004151 and 11174218)
文摘The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 954, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three-step laser excitation, and detected by electric field ionization (EFI) method. Two different kinds of the EFI pulses are applied after laser excitation to observe the possible impacts on the EFI process. The exact EFI ionization thresholds for the 4f76snp Rydberg states can be determined by observing the corresponding EFI spectra. In particular, some structures above the EFI threshold are found in the EFI spectra, which may be interpreted as the effect from black body radiation (BBR). Finally, the scaling law of the EFI threshold for the Eu 4f76snp Rydberg states with the effective quantum number is built.
基金Support from National Science Foundation of USA under Grant No. 0630370National Natural Science Foundation of China under Grant Nos. 90403028 and 11074260
文摘We report a theoretical scheme using a B-spline basis set to improve the poor computational accuracy of circular Rydberg states of hydrogen atoms in the intermediate magnetic field. This scheme can produce high accuracy energy levels and valid for an arbitrary magnetic field. Energy levels of hydrogen are presented for circular Rydberg states with azimuthal quantum numbers |m| =10-70 as a function of magnetic field strengths ranging from zero to 2.35 × 10^9 T. The variation of spatial distributions of electron probability densities with magnetic field strengths is discussed and competition between Coulomb and magnetic interactions is illustrated.
基金the National Basic Research Program of China(Grant No.2012CB921603)the National Natural Science Foundation of China(Grant Nos.61078001,61178009,11274209,and 60778008)+2 种基金the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(Grant No.J1103210)the Natural Science Foundation of Shanxi Province,China(Grant No.2012011003-2)the Shanxi International Collaboration Program(Grant No.2010081046)
文摘The Stark structures in a cesium atom around n=18 are numerically calculated. The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot, and those with a large |m| shift downward a little within 1100 V/cm. All components of P states shift downward. Experimental work has been performed in ultracold atomic cesium. Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field, and Stark spectra with |m|=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time. The observed spectra are analyzed in detail. The relative transition probability is calculated. The experimental results are in good agreement with our numerical computation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574056)the Program for New Century Excellent Talents in University (China)
文摘This paper analyzes the energy levels along the even-parity J = 1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. Below 59198 cm^-1, a total of 85 and 23 new energy levels, respectively, in the J = 1 and J = 2 series, which cannot be measured previously by experiments, are predicted in this work. Based on the calculated admixture coefficients of each channel, interchannel interactions were discussed in detail. The results are helpful to understand the characteristics of configuration interaction among even-parity levels in Sn I.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, and 10704028).
文摘The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecules under different laser intensities are obtained. In the slow electron region, the values of kinetic energy of photoelectrons corresponding to peaks 1, 2, 3, and 4 are 0.27, 0.86, 1.16, and 1.6 eV, respectively. With both the kinetic energy and angular distribution of photoelectrons from NH3 molecules, we can confirm that the two-photon excited intermediate Rydberg state is A^1 A2" (v2'=3) state for photoelectron peaks 2, 3, 4, and the three peaks are marked as 1223 (2 + 2), 1123 (2 + 2), and 1023 (2 + 2) multi-photon processes, respectively. Then, peak 1 is found by adding a hexapole between the source chamber and the detection chamber to realize the rotational state selection and beam focusing. Peak 1 is labeled as the 1323 (3 + 1) multi-photon process through the intermediate Rydberg state E^1A1'. The phenomena of channel switching are found in the slow electron kinetic energy distributions. Our calculations and experimental results indicate that the stretching vibrational mode of ammonia molecules varies with channels, while the umbrella vibration does not. In addition, we consider and discuss the ac-Stark effect in a strong laser field. Peaks 5 and 6 are marked as (2 + 2 + 1) and (2 + 2 + 2) above threshold ionization processes in the fast electron region.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21303255,21273274 and 91121006
文摘Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this strategy in combination with femtosecond time-resolved photoelectron imaging. The dark Rydberg S1 and bright valence S2 states are simultaneously excited by two photons of 405 nm, and then ionized by two photons of 800nm. The IC from S2 to S1 is clearly observed and extracted from the time dependence of the higher photoelectron kinetic energy (PKE) component. More importantly, the internal conversions to hot So from directly-prepared S1 and secondarily-populated S1 are unambiguously identified by the time-dependence of the lower PKE component. The average lifetime of the S2 and S1 states is measured to be 29 fs. The internal conversions of S2 to S1, S1 to hot So occur on estimated timescales of 15.4 fs and 38 fs, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574098 and 10674102)the Natural Science Foundation of Tianjin (Grant No 05YFJMJC05200)
文摘In this work, a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm^-1 and 40800 cm^-1. Comparisons between the results from the two detection techniques enable us to discriminate the Rydberg states from the valence states in the same energy region with the information of level energies, possible J values and their relative intensities. Furthermore, in the experiment two different excitation schemes are designed to obtain the spectra of highly excited even-parity states of the Sm atom. With a detailed analysis of the experimental data, this work not only confirms the results about many spectral data from the literature with different excitation schemes, but also reports new spectral data on 29 Rydberg states and 23 valence states.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the State Key Program of the National Natural Science of China(Grant Nos.11434007 and 61835007)+1 种基金the National Natural Science Foundation of China(Grant Nos.61675123,61775124,and 11804202)the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT 17R70).
文摘We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two intermediate levels,and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency(EIT).Nonlinear spectra are detected as a function of coupling laser frequency.The observed spectra exhibit an enhanced absorption(EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission(ET) signals at detunings to the transition.We define the enhanced absorption(transmission) strength,HEA(HET),and distance between two ET peaks,γET,to describe the spectral feature of the four-level atoms.The enhanced absorption signal HEA is found to have a maximum value when we vary the dressing laser Rabi frequency Ωd,corresponding Rabi frequency is defined as a separatrix point,ΩdSe.The values of ΩdSe and further η=ΩdSe/Ωc are found to depend on the probe and coupling Rabi frequency but not the atomic density.Based on ΩdSe,the spectra can be separated into two regimes,weak and strong dressing ranges,Ωd≤ΩdSe and Ωd≥QdSe,respectively.The spectroscopies display different features at these two regimes.A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.
基金National Key Research and Development Program of China(Grant No.2016YFA0302800)the National Natural Science Foundation of China(Grant Nos.U20A2074 and 12074391)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 21010100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017378)K.C.Wong Education Foundation(Grant No.GJTD-2019-15)。
文摘We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity(HFLTC).Firstly,the length of HFLTC is stabilized to a commercial frequency reference.Then,the two lasers are locked to this HFLTC using the Pound–Drever–Hall(PDH)method which can narrow the linewidths and stabilize the frequencies of both lasers simultaneously.Finally,the transmitted lasers of HFLTC with each power up to about 100μW,which act as seed lasers,are amplified using the injection locking method for single-atom Rydberg excitation.The linewidths of obtained lasers are narrowed to be less than 1 k Hz,meanwhile the obtained lasers'phase noise around 750 k Hz are suppressed about 30 d B.With the spectrally filtered lasers,we demonstrate a Rabi oscillation between the ground state and Rydberg state of single-atoms in an optical trap tweezer with a decay time of(67±37)μs,which is almost not affected by laser phase noise.We found that the maximum short-term laser frequency fluctuation of a single excitation lasers is at~3.3 k Hz and the maximum long-term laser frequency drift of a single laser is~46 k Hz during one month.Our work develops a stable and repeatable method to provide multiple laser sources of ultra-low phase noise,narrow linewidth,and excellent frequency stability,which is essential for high precision atomic experiments,such as neutral atom quantum computing,quantum simulation,quantum metrology,and so on.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10804025)the Natural Science Foundation of Hebei Province,China (Grant No. A2009000147)the Fundation for Photoelectronic Materia Research Base of Natural Science Foundation of Hebei Province,China (Grant Nos. 08B006 and 08B008)
文摘We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state to the obser-vation of the broadening and shifting of the barium Rydberg level 6s24d 1^D2 by collision with argon. The collision broadening and shifting cross sections are measured. This technique is purely optical, and can investigate the pressure dependence of the transverse relaxation rate-P21 between the Rydberg state and an intermediate state, as well as the transverse relaxation rate F20 between the Rydberg state and the ground state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91421305,91121005,and 11674359)the National Key Basic Research Program of China(Grant No.2013CB922003)
文摘We report a sensitive detection of high Rydberg atom with large dipole moment utilizing its deflection near a pair of parallel cylindrical copper rods which are oppositely charged. When the low-field seeking state Rydberg atoms fly across the gradient electric field formed by the pair of rods, they will be pushed away from the rods while the high-field seeking state ones will be attracted towards the rods. These atoms will form different patterns on an ion imaging system placed downwards at the end of the rods. The spatial distribution of the deflected atoms on the imaging system is also simulated, in good agreement with the experimental results, from which we can deduce the quantum state information of the excited atoms. This state resolvable Rydberg atom detection can be used for the dynamics research of the dipole-dipole interaction between atoms with large dipole moments.
基金Supported by the Beijing Natural Science Foundation under Grant No 1164016the National Natural Science Foundation of China under Grant No 11604334the Funding from TRIUMF which receives Federal Funding via a Contribution Agreement with the National Research Council of Canada and through a Natural Sciences and Engineering Research Council of Canada under Grant No 386343-2011
文摘We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory. Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states. The perturbation effects on line intensity, variation and line profile are discussed. Assignments of the perturber states and autoionizing states are presented.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technologythe National Natural Science Foundation of China (No.29973044).
文摘Photodissociation dynamics of the CH3 radical at 212.5 nm excitation has been studied experimentally using the H atom Rydberg tagging time-of-flight method. CH3 radicals are produded by photodissociation of CH3I at 266 nm. Translational energy distribution and angular distribution for the CH2 product from CH3 photodissociation at different vibrational levels via the 3s Rydberg state have been measured. From these distributions, product J state distributions are obtained for photodissociation of different vibrationally excited CH3 radicals. The effect of parent vibrational as well as rotational excitation on the dissociation dynamics of CH3 is also investigated in detail. Experimental results in this work show that parent vibrational excitation in the umbrella mode has a significant effect on both rotational excitation and angular distribution of the CH2 product, while parent rotational excitation has obvious effect only on the angular distribution of CH2 product.
基金Supported by This work is supported by the Ministry of Science and Technology and Ministry of Education of China, the Key Project of the Ministry of Education of China (N0 306020), the National Natural Science Foundation of China, the National High- Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Programme of China under Grant No 2006CB921408.
文摘Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and Na are in good agreement with the experimental values within 1% and the branching ratios of the J-resolved partial cross sections are consistent with the recent measurements within the experimental uncertainties. The agreements are impossible to be obtained without adequately taking into account the relativistic effects and the electron correlations together. Therefore, even for the intermediate-Z elements (e.g. Na with Z = 11), the relativistic effects (mainly the spin-orbit interactions) should not be neglected.
基金This work was supported by the National Natural Science Foundation of China(NSFC No. 20473042, N0. 20173029 and 10174042), NKBRSF, and SRFDP of China and by RFBR(grant 05-03-39012) of Russia.
文摘Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical double resonance (PFOODR) fluorescence excitation spectroscopy. These new data fill the gap between the low-v levels mainly observed by continuous wave (CW) PFOODR spectroscopy and the high-v levels above the 3s+3d limit observed by pulsed PFOODR with predissociation detection, Molecular constants are fitted below potential shelf around the 3s+3d atomic limit with previously published data (mainly observed by CW PFOODR) and these new data. RKR potential curve has been calculated with the new constants. The constants are: Te= 32127.090 cm^-1,ωe=121.4099(0.20720) cm^-1, Be = 0.116287(0.0002300) cm^-1, Re=3.551 A, An error of the RKR potential curve of J. Chem. Phys. 108, 7707 (1998) is corrected.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11322437 and 11574010)the National Basic Research ProgramChina(Grant No.2013CB922402)
文摘We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths.We find that the shift of the first above-threshold ionization(ATI) peak is closely related to the interferences between electron wave packets,which are controlled by the laser field and largely independent of the potential.By gradually changing the short-range potential to the long-range Coulomb potential,we show that the long-range potential's effect is mainly to focus the electrons along the laser's polarization and to generate the spider structure by enhancing the rescattering process with the parent ion.In addition,we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold.