Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud?ies on overtaking safety have neglected research into driver control input. A novel method is proposed to o...Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud?ies on overtaking safety have neglected research into driver control input. A novel method is proposed to obtain the driver control input during the overtaking process. Meanwhile, to improve the safety of overtaking, two types of safe distances, and the time of the overtaking are considered. Path constraints are established when considering the two types of safe distances. An optimal control model is established to solve the minimum time maneuver under multiple constraints. Using the Gauss pseudospectral method, the optimal control problem is converted into a nonlinear pro?gramming problem, which is then solved through sequential quadratic programming(SQP). In addition, the e ective?ness of the proposed method is verified based on the results of a Carsim simulation. The simulation results show that by adopting an inverse dynamics method to solve the manipulation problem of the vehicle’s minimum overtaking time, the manipulation capability of a vehicle in completing an overtaking safely within the minimum time can be obtained. This method can provide a reference for research into the active safety of manned and unmanned vehicles.展开更多
AIM:To compare the simulated safe distance(SSD)preoperatively versus real safe distance(RSD)postoperatively in patients with iris-claw phakic intraocular lens(p IOL)implantation according to iris configuration.METHODS...AIM:To compare the simulated safe distance(SSD)preoperatively versus real safe distance(RSD)postoperatively in patients with iris-claw phakic intraocular lens(p IOL)implantation according to iris configuration.METHODS:Totally 60 eyes of 60 patients underwent p IOL implantation for surgical correction of myopia.Anterior chamber depth(ACD)was measured with the IOLMaster 700,and nasal and temporal safety distances(SD)were measured pre-and postoperatively using Anterior Segment Visante-OCT.SD was defined as a line measured between the edge of the optic or its simulated image to the endothelium.Eyes were divided into 3 groups:convex,concave,and plane according to preoperatory iris configuration.Statistical analysis was performed using the R program,for the comparison of independent groups and multiple comparisons,the Kruskal-Wallis test and the Dunn test were used respectively.RESULTS:Mean difference between nasal preoperative SSD and postoperative RSD was-0.36±0.38,-0.29±0.48,and-0.18±0.30 mm in the concave,convex,and plane group,respectively.Mean difference between temporal SSD and RSD was-0.36±0.37,-0.14±0.38,and-0.24±0.33 mm in the concave,convex,and plane group,respectively.There were statistically significant differences between SSD and RSS for both nasal and temporal sides in the concave and plane group(P<0.002).CONCLUSION:Preoperative SSD and postoperative RSD for iris-claw p IOL shows significant differences in patients with concave and plane iris.展开更多
We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functi...We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety,efficiency, and smoothness(comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth(comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance.展开更多
Helicopter inspection of ultra high voltage (UHV) transmission lines has unmatched advantages compared to manual work due to the inspection angle and high-tech equipment on board, especially in detailed inspections ...Helicopter inspection of ultra high voltage (UHV) transmission lines has unmatched advantages compared to manual work due to the inspection angle and high-tech equipment on board, especially in detailed inspections of tower heads and defect-detections in virtue of infrared/ultraviolet techniques. This paper deals with some key technical problems in the inspections of i 000 kV UHVAC lines with a helicopter, such as the safe distance of live-line working, electromagnetic field intensity and flight control. Based on the study results, a set of UHV line inspection methods was worked out and applied to the inspection of live UHV lines.展开更多
By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, includ...By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, including safe distance headway and desired one. Theformer is decided by the demand for the degree of safety, and the latter depends on the motorists'behavior, i.e. the model of traffic flow. Both of them are functions of speed. According to thecharacteristics of their curves, we can find a crossing point that is the capacity of a roadsegment. This capacity represents the maximum flow rate meeting the minimum safety requirement.展开更多
A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified...A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified version of the commercial software AUTODYN.Three different criteria,i.e.a peak particle velocity (PPV) criterion,an effective strain (ES) criterion,and a damage criterion,are employed to examine the explosion-induced damaged zones of the underground rock chamber.The results show that the charge chamber geometry,coupling condition and charge configuration affect significantly the dynamic pressure exerted on the rock chamber wall.Thus the chamber is damaged.An inaccurate approximation of pressure boundary ignoring the influences of these factors would result in an erroneous prediction of damaged area and damage intensity of the charge chamber.The PPV criterion yields the largest damaged zone while the ES criterion gives the smallest one.The presented numerical simulation method is superior in consideration of the chamber geometry,loading density,coupling condition and rock quality.The predicted damage intensity of rock mass can be categorized quantitatively by an isotropic damage scalar.Safe separation distance of adjacent chambers for a specific charge weight is also estimated.展开更多
This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the di...This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening. The influence factors for the minimum safe crossing distance are conducted,including the tunnel radius, the friction angle of surrounding rocks, the inclination angle of sliding belt,and the friction coefficient of surrounding rocks. Secondly, taking account of the compressive zone and relaxed rocks caused by tunneling, the Sarma method is employed to calculate the safety factor of landslide. Finally, the analytical solutions for interaction between the tunnel and the landslide are compared with a series of numerical simulations, considering the cases for different perpendicular distances between the tunnel vault and the sliding belt. Resultsshow that the distance between the tunnel vault and the slip zone has significant influence on the rock stress and strain. For the case of the minimum crossing distance, a plastic zone in the landslide traversed by tunneling would be formed with rather large range, which seriously threatens the stability of landslide. This work demonstrates that the minimum safe crossing distance obtained from numerical simulation is in a good agreement with that calculated by the proposed analytical solutions.展开更多
A seismic-geological disaster can obviously affect an engineering site in three aspects:the first is ground faulting caused by the earthquake;the second is strong ground motion;the third is geological disasters such a...A seismic-geological disaster can obviously affect an engineering site in three aspects:the first is ground faulting caused by the earthquake;the second is strong ground motion;the third is geological disasters such as landslides,mud-rock flows and liquefaction.Through the case study of selection of the huge transformer substation in the Shimian region of Sichuan Province,this paper proposes that the activity pattern and spatial distribution of faults near the site are crucial factors for evaluating the seismic-geological conditions for the location of huge transformer substations.展开更多
In this paper, we propose a dynamic model for a single helicopter in the low airspace with telegraph poles and electrical wire. The numerical results show that the proposed model can qualitatively describe the helicop...In this paper, we propose a dynamic model for a single helicopter in the low airspace with telegraph poles and electrical wire. The numerical results show that the proposed model can qualitatively describe the helicopter's velocity, safe distances, and safe sphere when it runs across the obstacle consisting of telegraph poles and electricaJ wire.展开更多
Because of the complexity and variability of an intelligent vehicle’s driving environment,it is difficult for the application of the vehicular sensors to meet the needs of the surrounding environment information enti...Because of the complexity and variability of an intelligent vehicle’s driving environment,it is difficult for the application of the vehicular sensors to meet the needs of the surrounding environment information entirely.Vehicle-to-vehicle(V2V)communication technology is used by target vehicles to exchange information,and obtain the driving condition and driving intention of the front driver.To obtain environmental information outside the range of vehicular sensors in advance,in this paper,a vehicle overtaking assistance system is proposed based on V2V communication.The data,including the speed,position,direction angle and steering angle obtained using V2V communication,were preliminarily processed.Then,combined with an overtaking safety distance model,the vehicle parameters,driver’s driving intention and vehicle status information were entered into an overtaking security assistance system to determine the overtaking conditions.Fuzzy theory was used to control the parameters of the overtaking safety distance model.Finally,the overtaking safety assistance system was established and the proposed algorithm was tested using PreScan/MATLAB cooperative simulation software.The results showed that the proposed overtaking safety algorithm effectively provided a warning according to environmental change and the driver’s intention,which assisted the driver to overtake and avoid the occurrence of accidents,which improved the safety performance of the vehicle.展开更多
Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle t...Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle to avoid rear crash. However, this restriction is not consistent with the real traffic condition. Due to that, an enhanced safe distance car-following model is proposed first, and then calibrated and evaluated using the field data. Furthermore, the simulation is conducted to analyze the characteristics of the new model. The results of evaluation and simulation illustrate that the proposed model has higher simulation accuracy than the original Gipps' model, and can reproduce the stable flow and shock wave phenomena that are very common in real traffic.Moreover, the simulation results also prove that the enhanced model can better stabilize the traffic flow than Gipps' model.展开更多
The blast-induced vibration during excavation by drilling and blasting method has an important impact on thesurrounding structures. In particular, with the development of tunnel engineering, the impact of blasting vib...The blast-induced vibration during excavation by drilling and blasting method has an important impact on thesurrounding structures. In particular, with the development of tunnel engineering, the impact of blasting vibrationon tunnel construction has attracted extensive attention. In this paper, the propagation attenuation characteristicsof blast-induced vibration (PPV, peak particle velocity) on different tunnel structures were systematically studiedbased on the field monitoring data. Initially, the attenuation characteristics of blasting vibration PPV on the lowerbench surface, the side wall of the excavated tunnel and the closely spaced adjacent tunnel were investigated.Subsequently, the capacity of several widely utilized empirical prediction equations to estimate the PPV on tunnelstructures was examined, along with a comparative analysis of their prediction accuracy. The research findingsindicate that it is feasible to predict the PPV on the tunnel structures using empirical equations. The attenuationcharacteristics of blasting vibration PPV are different in different structures and directions. The prediction accuracy of the empirical equations varies, while the discrepancies are minimal. The principal variation amongthese equations lies in the site-specific coefficients k, β, λ, highlighting the differential impact of structural anddirectional considerations on the predictive efficacy. Based on the empirical equation and safe PPV provided bythe blasting vibration safe standards on tunnels of China (GB6722-2014), and considering the influence of allstructures and directions, it is determined that the safe distance of blasting vibration in the tested tunnel projectshould be larger than 20.28–18.31 m, 18.31–16.16 m, and 16.16–13.75 m for blasting vibration frequency locatedin 10 Hz, 10–50 Hz, and >50 Hz.展开更多
The impact of a typical municipal solid waste incinerator (MSWI) on polychlorinated biphenyl (PCB) concentrations in the surrounding soil was studied. Six stack gas samples were taken from the MSWI and 21 soil sam...The impact of a typical municipal solid waste incinerator (MSWI) on polychlorinated biphenyl (PCB) concentrations in the surrounding soil was studied. Six stack gas samples were taken from the MSWI and 21 soil samples were collected from sampling sites between 300 and 1700 m from the MSWI stack. The total (∑PCB) concentrations of dioxin-like (dl) PCBs and indicator PCBs in the stack gas samples were between 3.41 and 34.3 ng/m3, and the corresponding toxic equivalents (TEQs) ranged from 4.45 to 66.9 pg WHO-TEQ/m3, with a mean of 28.6 pg WHO-TEQ/m3. A total of 2.43 g WHO-TEQ of PCBs per year was calculated to be released into the environment from MSWIs in China. The ∑PCB concentrations in the soil samples ranged from 28.0 to 264.4 pg/g, with mean and median values of 127.6 and 127.7 pg/g, respectively, while the TEQ values were between 0.020 and 0.18 pg WHO-TEQ/g, with mean and median values of 0.074 and 0.062 pg WHO-TEQ/g, respectively. Comparing this study with other studies performed around the world suggest that PCB emission from incinerators has a critical influence on PCB concentrations in the surrounding soil. An exponential function equation is proposed, which indicates a clear decline in ∑PCB concentrations with increasing distance from the stack. A contour map created using an ordinary kriging interpolation technique showed that a limited area (1250 m radius) from the stack was clearly influenced by PCB emission from the MSWI.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11672127)Fundamental Research Funds for the Central Universities of China(Grant No.NP2016412)
文摘Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud?ies on overtaking safety have neglected research into driver control input. A novel method is proposed to obtain the driver control input during the overtaking process. Meanwhile, to improve the safety of overtaking, two types of safe distances, and the time of the overtaking are considered. Path constraints are established when considering the two types of safe distances. An optimal control model is established to solve the minimum time maneuver under multiple constraints. Using the Gauss pseudospectral method, the optimal control problem is converted into a nonlinear pro?gramming problem, which is then solved through sequential quadratic programming(SQP). In addition, the e ective?ness of the proposed method is verified based on the results of a Carsim simulation. The simulation results show that by adopting an inverse dynamics method to solve the manipulation problem of the vehicle’s minimum overtaking time, the manipulation capability of a vehicle in completing an overtaking safely within the minimum time can be obtained. This method can provide a reference for research into the active safety of manned and unmanned vehicles.
文摘AIM:To compare the simulated safe distance(SSD)preoperatively versus real safe distance(RSD)postoperatively in patients with iris-claw phakic intraocular lens(p IOL)implantation according to iris configuration.METHODS:Totally 60 eyes of 60 patients underwent p IOL implantation for surgical correction of myopia.Anterior chamber depth(ACD)was measured with the IOLMaster 700,and nasal and temporal safety distances(SD)were measured pre-and postoperatively using Anterior Segment Visante-OCT.SD was defined as a line measured between the edge of the optic or its simulated image to the endothelium.Eyes were divided into 3 groups:convex,concave,and plane according to preoperatory iris configuration.Statistical analysis was performed using the R program,for the comparison of independent groups and multiple comparisons,the Kruskal-Wallis test and the Dunn test were used respectively.RESULTS:Mean difference between nasal preoperative SSD and postoperative RSD was-0.36±0.38,-0.29±0.48,and-0.18±0.30 mm in the concave,convex,and plane group,respectively.Mean difference between temporal SSD and RSD was-0.36±0.37,-0.14±0.38,and-0.24±0.33 mm in the concave,convex,and plane group,respectively.There were statistically significant differences between SSD and RSS for both nasal and temporal sides in the concave and plane group(P<0.002).CONCLUSION:Preoperative SSD and postoperative RSD for iris-claw p IOL shows significant differences in patients with concave and plane iris.
基金supported by the National Natural Science Foundation of China(Grant No.61174183)
文摘We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety,efficiency, and smoothness(comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth(comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance.
文摘Helicopter inspection of ultra high voltage (UHV) transmission lines has unmatched advantages compared to manual work due to the inspection angle and high-tech equipment on board, especially in detailed inspections of tower heads and defect-detections in virtue of infrared/ultraviolet techniques. This paper deals with some key technical problems in the inspections of i 000 kV UHVAC lines with a helicopter, such as the safe distance of live-line working, electromagnetic field intensity and flight control. Based on the study results, a set of UHV line inspection methods was worked out and applied to the inspection of live UHV lines.
文摘By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, including safe distance headway and desired one. Theformer is decided by the demand for the degree of safety, and the latter depends on the motorists'behavior, i.e. the model of traffic flow. Both of them are functions of speed. According to thecharacteristics of their curves, we can find a crossing point that is the capacity of a roadsegment. This capacity represents the maximum flow rate meeting the minimum safety requirement.
文摘A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified version of the commercial software AUTODYN.Three different criteria,i.e.a peak particle velocity (PPV) criterion,an effective strain (ES) criterion,and a damage criterion,are employed to examine the explosion-induced damaged zones of the underground rock chamber.The results show that the charge chamber geometry,coupling condition and charge configuration affect significantly the dynamic pressure exerted on the rock chamber wall.Thus the chamber is damaged.An inaccurate approximation of pressure boundary ignoring the influences of these factors would result in an erroneous prediction of damaged area and damage intensity of the charge chamber.The PPV criterion yields the largest damaged zone while the ES criterion gives the smallest one.The presented numerical simulation method is superior in consideration of the chamber geometry,loading density,coupling condition and rock quality.The predicted damage intensity of rock mass can be categorized quantitatively by an isotropic damage scalar.Safe separation distance of adjacent chambers for a specific charge weight is also estimated.
基金financial support provided by Natural Science Foundation of China (Grant No. 51008188)by Shanghai Natural Science Foundation (Grant No. 15ZR1429400)+2 种基金by Open Project Program of State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering (Grant No. CQSLBF-Y15-1)by Open Project Program of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2015K015)by the Open Project Program of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources (Grant No. 2015k005)
文摘This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening. The influence factors for the minimum safe crossing distance are conducted,including the tunnel radius, the friction angle of surrounding rocks, the inclination angle of sliding belt,and the friction coefficient of surrounding rocks. Secondly, taking account of the compressive zone and relaxed rocks caused by tunneling, the Sarma method is employed to calculate the safety factor of landslide. Finally, the analytical solutions for interaction between the tunnel and the landslide are compared with a series of numerical simulations, considering the cases for different perpendicular distances between the tunnel vault and the sliding belt. Resultsshow that the distance between the tunnel vault and the slip zone has significant influence on the rock stress and strain. For the case of the minimum crossing distance, a plastic zone in the landslide traversed by tunneling would be formed with rather large range, which seriously threatens the stability of landslide. This work demonstrates that the minimum safe crossing distance obtained from numerical simulation is in a good agreement with that calculated by the proposed analytical solutions.
基金This project was sponsored by the National 973 Programme of China (4047109)
文摘A seismic-geological disaster can obviously affect an engineering site in three aspects:the first is ground faulting caused by the earthquake;the second is strong ground motion;the third is geological disasters such as landslides,mud-rock flows and liquefaction.Through the case study of selection of the huge transformer substation in the Shimian region of Sichuan Province,this paper proposes that the activity pattern and spatial distribution of faults near the site are crucial factors for evaluating the seismic-geological conditions for the location of huge transformer substations.
基金Supported by the State Key Basic Research Program of China under Grant No.2011CB707002
文摘In this paper, we propose a dynamic model for a single helicopter in the low airspace with telegraph poles and electrical wire. The numerical results show that the proposed model can qualitatively describe the helicopter's velocity, safe distances, and safe sphere when it runs across the obstacle consisting of telegraph poles and electricaJ wire.
基金The authors acknowledge the National Key Research and Development Program of China under Grants(2016YFB0100904,2017YFB0102603)Chongqing Science and Technology Commission under Grants(cstc2015jcyjBX0097,csts2015zdcyztzx30001)for financial support.
文摘Because of the complexity and variability of an intelligent vehicle’s driving environment,it is difficult for the application of the vehicular sensors to meet the needs of the surrounding environment information entirely.Vehicle-to-vehicle(V2V)communication technology is used by target vehicles to exchange information,and obtain the driving condition and driving intention of the front driver.To obtain environmental information outside the range of vehicular sensors in advance,in this paper,a vehicle overtaking assistance system is proposed based on V2V communication.The data,including the speed,position,direction angle and steering angle obtained using V2V communication,were preliminarily processed.Then,combined with an overtaking safety distance model,the vehicle parameters,driver’s driving intention and vehicle status information were entered into an overtaking security assistance system to determine the overtaking conditions.Fuzzy theory was used to control the parameters of the overtaking safety distance model.Finally,the overtaking safety assistance system was established and the proposed algorithm was tested using PreScan/MATLAB cooperative simulation software.The results showed that the proposed overtaking safety algorithm effectively provided a warning according to environmental change and the driver’s intention,which assisted the driver to overtake and avoid the occurrence of accidents,which improved the safety performance of the vehicle.
基金the National Natural Science Foundation of China(No.51278429)the Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University(No.K201207)the Program for New Century Excellent Talents in University(No.NCET-13-0977)
文摘Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle to avoid rear crash. However, this restriction is not consistent with the real traffic condition. Due to that, an enhanced safe distance car-following model is proposed first, and then calibrated and evaluated using the field data. Furthermore, the simulation is conducted to analyze the characteristics of the new model. The results of evaluation and simulation illustrate that the proposed model has higher simulation accuracy than the original Gipps' model, and can reproduce the stable flow and shock wave phenomena that are very common in real traffic.Moreover, the simulation results also prove that the enhanced model can better stabilize the traffic flow than Gipps' model.
基金supported by the General Project of China Postdoctoral Science Foundation(2023M742141)the Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine(SKLMRDPC23KF06)the Talent Introduction Project of Shandong University of Science and Technology(0104060540171).
文摘The blast-induced vibration during excavation by drilling and blasting method has an important impact on thesurrounding structures. In particular, with the development of tunnel engineering, the impact of blasting vibrationon tunnel construction has attracted extensive attention. In this paper, the propagation attenuation characteristicsof blast-induced vibration (PPV, peak particle velocity) on different tunnel structures were systematically studiedbased on the field monitoring data. Initially, the attenuation characteristics of blasting vibration PPV on the lowerbench surface, the side wall of the excavated tunnel and the closely spaced adjacent tunnel were investigated.Subsequently, the capacity of several widely utilized empirical prediction equations to estimate the PPV on tunnelstructures was examined, along with a comparative analysis of their prediction accuracy. The research findingsindicate that it is feasible to predict the PPV on the tunnel structures using empirical equations. The attenuationcharacteristics of blasting vibration PPV are different in different structures and directions. The prediction accuracy of the empirical equations varies, while the discrepancies are minimal. The principal variation amongthese equations lies in the site-specific coefficients k, β, λ, highlighting the differential impact of structural anddirectional considerations on the predictive efficacy. Based on the empirical equation and safe PPV provided bythe blasting vibration safe standards on tunnels of China (GB6722-2014), and considering the influence of allstructures and directions, it is determined that the safe distance of blasting vibration in the tested tunnel projectshould be larger than 20.28–18.31 m, 18.31–16.16 m, and 16.16–13.75 m for blasting vibration frequency locatedin 10 Hz, 10–50 Hz, and >50 Hz.
基金supported by the National Program on Key Basic Research Project (973) of China (No.2011CB201500)the Environmental Public Welfare Projects (No.201209019, 201109001)+1 种基金the National Hightech Research and Development Program (863) of China (No.2011AA060605)the National Natural Science Foundation of China (No.20977099, 21077121)
文摘The impact of a typical municipal solid waste incinerator (MSWI) on polychlorinated biphenyl (PCB) concentrations in the surrounding soil was studied. Six stack gas samples were taken from the MSWI and 21 soil samples were collected from sampling sites between 300 and 1700 m from the MSWI stack. The total (∑PCB) concentrations of dioxin-like (dl) PCBs and indicator PCBs in the stack gas samples were between 3.41 and 34.3 ng/m3, and the corresponding toxic equivalents (TEQs) ranged from 4.45 to 66.9 pg WHO-TEQ/m3, with a mean of 28.6 pg WHO-TEQ/m3. A total of 2.43 g WHO-TEQ of PCBs per year was calculated to be released into the environment from MSWIs in China. The ∑PCB concentrations in the soil samples ranged from 28.0 to 264.4 pg/g, with mean and median values of 127.6 and 127.7 pg/g, respectively, while the TEQ values were between 0.020 and 0.18 pg WHO-TEQ/g, with mean and median values of 0.074 and 0.062 pg WHO-TEQ/g, respectively. Comparing this study with other studies performed around the world suggest that PCB emission from incinerators has a critical influence on PCB concentrations in the surrounding soil. An exponential function equation is proposed, which indicates a clear decline in ∑PCB concentrations with increasing distance from the stack. A contour map created using an ordinary kriging interpolation technique showed that a limited area (1250 m radius) from the stack was clearly influenced by PCB emission from the MSWI.