Uncertain security threats caused by vulnerabilities and backdoors are the most serious and difficult problem in cyberspace.This paper analyzes the philosophical and technical causes of the existence of so-called"...Uncertain security threats caused by vulnerabilities and backdoors are the most serious and difficult problem in cyberspace.This paper analyzes the philosophical and technical causes of the existence of so-called"dark functions"such as system vulnerabilities and backdoors,and points out that endogenous security problems cannot be completely eliminated at the theoretical and engineering levels;rather,it is necessary to develop or utilize the endogenous security functions of the system architecture itself.In addition,this paper gives a definition for and lists the main technical characteristics of endogenous safety and security in cyberspace,introduces endogenous safety and security mechanisms and characteristics based on dynamic heterogeneous redundancy(DHR)architecture,and describes the theoretical implications of a coding channel based on DHR.展开更多
Recent advances in deep learning have led to disruptive breakthroughs in artificial intelligence(AI),fueling the jump in ChatGPT-like large language models(LLMs).As with any emerging technology,it is a two-sided coin,...Recent advances in deep learning have led to disruptive breakthroughs in artificial intelligence(AI),fueling the jump in ChatGPT-like large language models(LLMs).As with any emerging technology,it is a two-sided coin,bringing not only vast social impacts but also significant security concerns,especially in the socio-cognitive domain.Against this back-ground,this work starts with an inherent mechanism analysis of cognitive domain games,from which it proceeds to explore the security concerns facing the cognitive domain as well as to analyze the formation mechanisms of a cognitive immune system.Finally,inspired by behavioral mimicry in biology,this work will elaborate on new approaches to cognitive security from three aspects:Mimicry Computing,Mimicry Defense,and Mimicry Intelligence.展开更多
A research arena(WARA-PS)for sensing,data fusion,user interaction,planning and control of collaborative autonomous aerial and surface vehicles in public safety applications is presented.The objective is to demonstrate...A research arena(WARA-PS)for sensing,data fusion,user interaction,planning and control of collaborative autonomous aerial and surface vehicles in public safety applications is presented.The objective is to demonstrate scientific discoveries and to generate new directions for future research on autonomous systems for societal challenges.The enabler is a computational infrastructure with a core system architecture for industrial and academic collaboration.This includes a control and command system together with a framework for planning and executing tasks for unmanned surface vehicles and aerial vehicles.The motivating application for the demonstration is marine search and rescue operations.A state-of-art delegation framework for the mission planning together with three specific applications is also presented.The first one concerns model predictive control for cooperative rendezvous of autonomous unmanned aerial and surface vehicles.The second project is about learning to make safe real-time decisions under uncertainty for autonomous vehicles,and the third one is on robust terrain-aided navigation through sensor fusion and virtual reality tele-operation to support a GPS-free positioning system in marine environments.The research results have been experimentally evaluated and demonstrated to industry and public sector audiences at a marine test facility.It would be most difficult to do experiments on this large scale without the WARA-PS research arena.Furthermore,these demonstrator activities have resulted in effective research dissemination with high public visibility,business impact and new research collaborations between academia and industry.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
The harsh environment in tunnels with high geothermal temperatures and humidity can adversely impact machinery,personnel,and construction.The main causes of specific problems are the unknown mechanisms of local geothe...The harsh environment in tunnels with high geothermal temperatures and humidity can adversely impact machinery,personnel,and construction.The main causes of specific problems are the unknown mechanisms of local geothermal formation,inappropriate temperature control measures,and insufficient systematic safeguards.In this study,three work sections relating to a high geothermal tunnel are:the tunnel face,middle-of-tunnel section,and outside-oftunnel section.A cooling strategy is proposed to offer technical support in achieving comprehensive cooling,overall as well as for each of the sections.First,a comprehensive geological survey explores the mechanism and exact location of the heat source.Secondly,grouting and centralized drainage measures are used to control the heat release of hot water.Enhanced ventilation,ice chillers and other applicable measures are used to control the ambient temperature.Finally,a monitoring and early warning system is established to prevent accidents.This cooling strategy has been applied in the field with good results.展开更多
According to the essential characteristic of industrial control system(ICS),endogenous safety and security(ESS)can be achieved by merging cyber security(CS)into functional safety(FS).In this paper,the basic principles...According to the essential characteristic of industrial control system(ICS),endogenous safety and security(ESS)can be achieved by merging cyber security(CS)into functional safety(FS).In this paper,the basic principles,functional requirements and protection architecture(TEMt)of ESS are proposed,and the successful experience of an electric power control system is introduced.展开更多
In this paper,we propose a conjecture that endogenous security without any prior knowledge is similar to perfect secrecy without any prior knowledge.To prove the conjecture,we first establish a cryptography model of i...In this paper,we propose a conjecture that endogenous security without any prior knowledge is similar to perfect secrecy without any prior knowledge.To prove the conjecture,we first establish a cryptography model of instinct function security to transform the security problem in the network domain into an encryption problem in the cryptographic domain.Then,we inherit and apply the established ideas and means of Perfect Secrecy,and propose the concept,definition and corollaries of the perfect instinct function security(PIFS)corresponding to Perfect Secrecy.Furthermore,we take the DHR system as a concrete implementation of PIFS and propose the DHR Perfect Security Theorem corresponding to Shannon’s Perfect Secrecy Theorem.Finally,we prove that the DHR satisfying the“OneTime Reconstruction”constraint is the sufficient and necessary condition to achieve perfect security.This means that the existence of PIFS is also proven.The analysis shows that any reconfigurable system can be encrypted by its construct and that the PIFS converts the oneway transparent superiority of the attacker into a double-blind problem for both the attacker and the defender,which leads to that the attacker is impossible to obtain useful construction information from the attacks and unable to find a better way than blind trial-and-error or brute-force attacks.Since the attackers are required to have the new powerful ability to crack the structure cryptogram,the threshold of cyber security is raised to at least the same level as cryptogram deciphering,thereafter the ubiquitous cyber threats are destined to be significantly reduced.展开更多
基金supported by the National Natural Science Foundation Innovation Group Project(61521003)。
文摘Uncertain security threats caused by vulnerabilities and backdoors are the most serious and difficult problem in cyberspace.This paper analyzes the philosophical and technical causes of the existence of so-called"dark functions"such as system vulnerabilities and backdoors,and points out that endogenous security problems cannot be completely eliminated at the theoretical and engineering levels;rather,it is necessary to develop or utilize the endogenous security functions of the system architecture itself.In addition,this paper gives a definition for and lists the main technical characteristics of endogenous safety and security in cyberspace,introduces endogenous safety and security mechanisms and characteristics based on dynamic heterogeneous redundancy(DHR)architecture,and describes the theoretical implications of a coding channel based on DHR.
基金supported in part by National Key R&D Plan(2022YFB3102901)
文摘Recent advances in deep learning have led to disruptive breakthroughs in artificial intelligence(AI),fueling the jump in ChatGPT-like large language models(LLMs).As with any emerging technology,it is a two-sided coin,bringing not only vast social impacts but also significant security concerns,especially in the socio-cognitive domain.Against this back-ground,this work starts with an inherent mechanism analysis of cognitive domain games,from which it proceeds to explore the security concerns facing the cognitive domain as well as to analyze the formation mechanisms of a cognitive immune system.Finally,inspired by behavioral mimicry in biology,this work will elaborate on new approaches to cognitive security from three aspects:Mimicry Computing,Mimicry Defense,and Mimicry Intelligence.
基金All authors are partially supported by the Wallenberg AI,Autonomous Systems and Software Program(WASP)funded by the Knut and Alice Wallenberg Foundation.The first and second authors are additionally supported by the ELLIIT Network Organization for Information and Communication Technology,Swedenthe Swedish Foundation for Strategic Research SSF(Smart Systems Project RIT15-0097)+1 种基金The second author is also supported by a RExperts Program Grant 2020A1313030098 from the Guangdong Department of Science and Technology,ChinaThe fifth and eighth authors are additionally supported by the Swedish Research Council.
文摘A research arena(WARA-PS)for sensing,data fusion,user interaction,planning and control of collaborative autonomous aerial and surface vehicles in public safety applications is presented.The objective is to demonstrate scientific discoveries and to generate new directions for future research on autonomous systems for societal challenges.The enabler is a computational infrastructure with a core system architecture for industrial and academic collaboration.This includes a control and command system together with a framework for planning and executing tasks for unmanned surface vehicles and aerial vehicles.The motivating application for the demonstration is marine search and rescue operations.A state-of-art delegation framework for the mission planning together with three specific applications is also presented.The first one concerns model predictive control for cooperative rendezvous of autonomous unmanned aerial and surface vehicles.The second project is about learning to make safe real-time decisions under uncertainty for autonomous vehicles,and the third one is on robust terrain-aided navigation through sensor fusion and virtual reality tele-operation to support a GPS-free positioning system in marine environments.The research results have been experimentally evaluated and demonstrated to industry and public sector audiences at a marine test facility.It would be most difficult to do experiments on this large scale without the WARA-PS research arena.Furthermore,these demonstrator activities have resulted in effective research dissemination with high public visibility,business impact and new research collaborations between academia and industry.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.51878567 and 51878568).
文摘The harsh environment in tunnels with high geothermal temperatures and humidity can adversely impact machinery,personnel,and construction.The main causes of specific problems are the unknown mechanisms of local geothermal formation,inappropriate temperature control measures,and insufficient systematic safeguards.In this study,three work sections relating to a high geothermal tunnel are:the tunnel face,middle-of-tunnel section,and outside-oftunnel section.A cooling strategy is proposed to offer technical support in achieving comprehensive cooling,overall as well as for each of the sections.First,a comprehensive geological survey explores the mechanism and exact location of the heat source.Secondly,grouting and centralized drainage measures are used to control the heat release of hot water.Enhanced ventilation,ice chillers and other applicable measures are used to control the ambient temperature.Finally,a monitoring and early warning system is established to prevent accidents.This cooling strategy has been applied in the field with good results.
文摘According to the essential characteristic of industrial control system(ICS),endogenous safety and security(ESS)can be achieved by merging cyber security(CS)into functional safety(FS).In this paper,the basic principles,functional requirements and protection architecture(TEMt)of ESS are proposed,and the successful experience of an electric power control system is introduced.
基金supported by the National Natural Science Foundation of China(No.U22A2001)the National Key Research and Development Program under Grants 2022YFB2902205
文摘In this paper,we propose a conjecture that endogenous security without any prior knowledge is similar to perfect secrecy without any prior knowledge.To prove the conjecture,we first establish a cryptography model of instinct function security to transform the security problem in the network domain into an encryption problem in the cryptographic domain.Then,we inherit and apply the established ideas and means of Perfect Secrecy,and propose the concept,definition and corollaries of the perfect instinct function security(PIFS)corresponding to Perfect Secrecy.Furthermore,we take the DHR system as a concrete implementation of PIFS and propose the DHR Perfect Security Theorem corresponding to Shannon’s Perfect Secrecy Theorem.Finally,we prove that the DHR satisfying the“OneTime Reconstruction”constraint is the sufficient and necessary condition to achieve perfect security.This means that the existence of PIFS is also proven.The analysis shows that any reconfigurable system can be encrypted by its construct and that the PIFS converts the oneway transparent superiority of the attacker into a double-blind problem for both the attacker and the defender,which leads to that the attacker is impossible to obtain useful construction information from the attacks and unable to find a better way than blind trial-and-error or brute-force attacks.Since the attackers are required to have the new powerful ability to crack the structure cryptogram,the threshold of cyber security is raised to at least the same level as cryptogram deciphering,thereafter the ubiquitous cyber threats are destined to be significantly reduced.