Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle...Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.展开更多
The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Sa...The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Safety Distance (ASD) between the fire and firefighters is required. This distance is usually set thanks to a general rule-of-thumb: it should be at least 4 times the maximum flame length. A common assumption considers an empirical relationship between fireline intensity and flame length. In the current work which follows on from an oral presentation held at the VII International Conference on Forest Fire Research in Coimbra in 2014, an alternative way is proposed: a closed physical model is applied in order to quantize the ASD. This model is integrated in a software tool, which uses a simulation framework based on Discrete EVent system Specification formalism (DEVS), a 3D physical real-time model of surface fires developed at the University of Corsica and a mobile application based on a Google SDK to display the展开更多
At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the inter...At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the interaction mechanism of a tunnel under-traversing a slope body with potential landslides is still not well understood.Based on the field data provided by previous investigations in the study area,six sets of 1:100 laboratory experiment model tests were conducted to study the stability of the landslide-prone zone of the slope body with an under-traversing tunnel.The selected distances between the tunnel and the sliding surface are 1.5,3,and 5 times of the tunnel diameter,respectively.The experiment results show the interaction between the landslide-prone zone and the tunnel,elucidating the effect of potential landslides during the tunnel excavation process and the reaction of the landslide slip on the tunnel structure.Several conclusions are obtained:①During the process of tunnel excavation,the vertical displacement of the tunnel vault decreases with the increase of the buried depth.②The vertical displacement of the sliding surface increases with the increase of the buried depth of the tunnel.The horizontal displacement of sliding surface decreases with the increase of the buried depth.③After the occurrence of a rainfall-induced landslide,the vertical displacement of the tunnel vault in the 1.5-diameter-distance case is 57.29%greater than that in the 3.0-dismeter-distance case.④For a two-cave tunnel,it is suggested that the cave farther from the landslide toe should be firstly excavated since it may generate less structural deformation.展开更多
The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the s...The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the safety distance between expressway tunnel and interchange under multi tunnel,and proposes safety distance measures between expressway tunnel and interchange under multi tunnel,based on the current safety distance standard between expressway tunnel and interchange under multi tunnel.展开更多
A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The val...A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.展开更多
The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin sh...The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.展开更多
The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares th...The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.展开更多
A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the bas...A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.展开更多
Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distribut...Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.展开更多
To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and s...To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.展开更多
Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The exp...Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The explosion test data are few.Most exsiting studies focus on the propagation of shock wave and the influence of blast wall on the propagation of shock wave.Discussion on the main parameters of blast wall design is meagre,such as the design of safety distance,the distance from the blast wall to the protective building,height and width of the blast wall.This paper uses the finite element programme LS-DYNA to design the blast wall.To analyze the convergence of the finite element model and to determine the mesh size of the model,this paper establishes several finite element models with different sizes of meshes to verify the model.Then,the overpressure distribution of the shock wave on the protective building is simulated to implement the blast wall design.The geometric parameters of the blast wall are preliminarily determined.And the influence of the safety distance on the overpressure of the building surface is mainly discussed,so as to determine the final design parameters.When the overpressure is less than 2 kPa,it is considered that there will be no damage to people caused by flying fragments.Eventually,the blast wall height is 3 m,the thickness is 1 m,and the safety distance is 35 m.The proposed method is used to demonstrate the design method,and the final design parameters of the blast wall can thus be used for reference.展开更多
A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking ...A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.展开更多
The Qinghai-Tibet Expressway is a major strategic project planned by China that will be built along the Qinghai-Tibet Engineering Corridor. At present,important traffic line projects,such as the Qinghai-Tibet Railway,...The Qinghai-Tibet Expressway is a major strategic project planned by China that will be built along the Qinghai-Tibet Engineering Corridor. At present,important traffic line projects,such as the Qinghai-Tibet Railway,have been built within this narrow corridor,particularly at the blown sand sections. How to ensure that the wind speed and its flow field between the new expressway and existing railway subgrades are not affected by each other is a priority to prevent breaking the dynamic balance of the blown sand movement of the existing subgrade,thereby avoiding aggravating or inducing new blown sand hazards and ensure the safe operation of the existing Qinghai-Tibet Railway. Therefore,defining the minimum distance of the wind speed and its flow field,which are not affected by each other,between the subgrades become a scientific problem that should be solved immediately to implement the construction of the Qinghai-Tibet Expressway. For this purpose,the minimum safe distance between the subgrades of the Qinghai-Tibet Expressway and Qinghai-Tibet Railway was investigated from the perspective of blown sand by making subgrade models for conducting wind tunnel experiments and combining the observation data of the local field. Results indicated that the minimum safe distance between the two subgrades is 45–50 times the subgrade height when the Qinghai-Tibet Expressway is located at the downwind direction of the Qinghai-Tibet Railway,and 50 times the subgrade height when the former is located at the upwind direction of the latter. These results have guiding significance for the route selection,survey,and design of the Qinghai-Tibet Expressway at the blown sand sections and for the traffic line projects in other similar sandy regions.展开更多
基金supported by the National Basic Research Program of China(2012CB719702)the International Science&Technology Cooperation Program of China(2014DFG72300)the Fundamental Research Funds for the Central University(WK2320000014)
文摘Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.
基金pported in part by the French Ministry of Research,the Corsican Region and the CNRS,under Grant CPER 2007-2013
文摘The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Safety Distance (ASD) between the fire and firefighters is required. This distance is usually set thanks to a general rule-of-thumb: it should be at least 4 times the maximum flame length. A common assumption considers an empirical relationship between fireline intensity and flame length. In the current work which follows on from an oral presentation held at the VII International Conference on Forest Fire Research in Coimbra in 2014, an alternative way is proposed: a closed physical model is applied in order to quantize the ASD. This model is integrated in a software tool, which uses a simulation framework based on Discrete EVent system Specification formalism (DEVS), a 3D physical real-time model of surface fires developed at the University of Corsica and a mobile application based on a Google SDK to display the
基金This project is sponsored by the funding of CAS Pioneer Hundred Talents Program.
文摘At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the interaction mechanism of a tunnel under-traversing a slope body with potential landslides is still not well understood.Based on the field data provided by previous investigations in the study area,six sets of 1:100 laboratory experiment model tests were conducted to study the stability of the landslide-prone zone of the slope body with an under-traversing tunnel.The selected distances between the tunnel and the sliding surface are 1.5,3,and 5 times of the tunnel diameter,respectively.The experiment results show the interaction between the landslide-prone zone and the tunnel,elucidating the effect of potential landslides during the tunnel excavation process and the reaction of the landslide slip on the tunnel structure.Several conclusions are obtained:①During the process of tunnel excavation,the vertical displacement of the tunnel vault decreases with the increase of the buried depth.②The vertical displacement of the sliding surface increases with the increase of the buried depth of the tunnel.The horizontal displacement of sliding surface decreases with the increase of the buried depth.③After the occurrence of a rainfall-induced landslide,the vertical displacement of the tunnel vault in the 1.5-diameter-distance case is 57.29%greater than that in the 3.0-dismeter-distance case.④For a two-cave tunnel,it is suggested that the cave farther from the landslide toe should be firstly excavated since it may generate less structural deformation.
文摘The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the safety distance between expressway tunnel and interchange under multi tunnel,and proposes safety distance measures between expressway tunnel and interchange under multi tunnel,based on the current safety distance standard between expressway tunnel and interchange under multi tunnel.
文摘A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.
基金Nova Trading Company from Torun and Rywal-RHC Company from Lublin for the financial support owing to which it was possible to perform the research study and tests presented in the compilation.
文摘The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.
基金Project of National Natural Science Fund for the Youth,China(No.51208473)The Key Project for Science and Technology of Shanxi,China(No.20130313010-3)
文摘The paper takes a new campus project site of Shanxi university town for example, tests the influence of dynamic com- paction vibration and vibration isolation effect of isolation trench on this ground, and compares the influences of the dynamic compaction vibration on surrounding buildings with isolation trench and without it. Furthermore, the attenuation law of dy- namic compaction vibration in fill foundation of the loess area under different tamping energy and how to determine safe distance of dynamic compaction construction are studied. And then the quantitative relationship between acceleration and vibration source in new campus project site is presented. We derive the evaluation method that dynamic compaction construction affects adjacent buildings by contrasting with the existing standards and norms. The monitoring results show that isolation trench makes the amplitude attenuation of the horizontal velocity of dynamic compaction vibration reach above 75%, and the safe dis- tance be 30 m under the tamping energy of 6 000 kN · m. Therefore, isolation trench is better for vibration reduction under dynamic compaction construction.
基金The National Key Technology R&D Program of China during the 10th Five-Year Plan Period(No.2005BA41B11)the National Natural Science Foundation of China(No.50578003)
文摘A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.
基金financial support from the Natural Science Foundation of China (Grant No. 41272151, 41472126)the Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province, China (Grant No. JC201304)+1 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No. U1562214)the Program for Huabei Oilfield (Grant No. HBYT-CY5-2015-JS-127)
文摘Most major oil zones in the Daqing Oilfield have reached a later,high water cut stage,but oil recovery is still only approximately 35%,and 50%of reserves remain to be recovered.The remaining oil is primarily distributed at the edge of faults,in poor sand bodies,and in insufficiently injected and produced areas.Therefore,the edge of faults is a major target for remaining oil enrichment and potential tapping.Based on the dynamic change of production from development wells determined by the injection-recovery relationship at the edge of faults,we analyzed the control of structural features of faults on remaining oil enrichment at the edge.Our results show that the macroscopic structural features and their geometric relationship with sand bodies controlled remaining oil enrichment zones like the edges of NNE-striking faults,the footwalls of antithetic faults,the hard linkage segments(two faults had linked together with each other to form a bigger through-going fault),the tips of faults,and the oblique anticlines of soft linkages.Fault edges formed two types of forward microamplitude structures:(1) the tilted uplift of footwalls controlled by inverse fault sections and(2) the hanging-wall horizontal anticlines controlled by synthetic fault points.The remaining oil distribution was controlled by microamplitude structures.Consequently,such zones as the tilted uplift of the footwall of the NNW-striking antithetic faults with a fault throw larger than 40 m,the hard linkage segments,the tips of faults,and the oblique anticlines of soft linkage were favorable for tapping the remaining oil potential.Multi-target directional drilling was used for remaining oil development at fault edges.Reasonable fault spacing was determined on the basis of fault combinations and width of the shattered zone.Well core and log data revealed that the width of the shattered zone on the side of the fault core was less than 15 m in general;therefore,the distance from a fault to the development target should be larger than 15 m.Vertically segmented growth faults should take the separation of the lateral overlap of faults into account.Therefore,the safe distance of remaining oil well deployment at the fault edge should be larger than the sum of the width of shattered zone in faults and the separation of growth faults by vertical segmentation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71571107 and 11302110)The Scientific Research Fund of Zhejiang Province,China(Grant Nos.LY15A020007,LY15E080013,and LY16G010003)+2 种基金The Natural Science Foundation of Ningbo City(Grant Nos.2014A610030and 2015A610299)the Fund from the Government of the Hong Kong Administrative Region,China(Grant No.City U11209614)the K C Wong Magna Fund in Ningbo University,China
文摘To further investigate car-following behaviors in the cooperative adaptive cruise control(CACC) strategy,a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models.In this control system,some vital comprehensive information,such as multiple preceding cars’ speed differences and headway,variable safety distance(VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods.Local and string stability criterion for the velocity control(VC) model and gap control(GC) model are derived via linear stability theory.Numerical simulations are conducted to study the performance of the simulated traffic flow.The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion.
基金This work was supported by the National Natural Science Foundation of China(No.51878507).
文摘Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The explosion test data are few.Most exsiting studies focus on the propagation of shock wave and the influence of blast wall on the propagation of shock wave.Discussion on the main parameters of blast wall design is meagre,such as the design of safety distance,the distance from the blast wall to the protective building,height and width of the blast wall.This paper uses the finite element programme LS-DYNA to design the blast wall.To analyze the convergence of the finite element model and to determine the mesh size of the model,this paper establishes several finite element models with different sizes of meshes to verify the model.Then,the overpressure distribution of the shock wave on the protective building is simulated to implement the blast wall design.The geometric parameters of the blast wall are preliminarily determined.And the influence of the safety distance on the overpressure of the building surface is mainly discussed,so as to determine the final design parameters.When the overpressure is less than 2 kPa,it is considered that there will be no damage to people caused by flying fragments.Eventually,the blast wall height is 3 m,the thickness is 1 m,and the safety distance is 35 m.The proposed method is used to demonstrate the design method,and the final design parameters of the blast wall can thus be used for reference.
文摘A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41877530)the Youth Innovation Promotion Association CAS(Grant No.2018459)。
文摘The Qinghai-Tibet Expressway is a major strategic project planned by China that will be built along the Qinghai-Tibet Engineering Corridor. At present,important traffic line projects,such as the Qinghai-Tibet Railway,have been built within this narrow corridor,particularly at the blown sand sections. How to ensure that the wind speed and its flow field between the new expressway and existing railway subgrades are not affected by each other is a priority to prevent breaking the dynamic balance of the blown sand movement of the existing subgrade,thereby avoiding aggravating or inducing new blown sand hazards and ensure the safe operation of the existing Qinghai-Tibet Railway. Therefore,defining the minimum distance of the wind speed and its flow field,which are not affected by each other,between the subgrades become a scientific problem that should be solved immediately to implement the construction of the Qinghai-Tibet Expressway. For this purpose,the minimum safe distance between the subgrades of the Qinghai-Tibet Expressway and Qinghai-Tibet Railway was investigated from the perspective of blown sand by making subgrade models for conducting wind tunnel experiments and combining the observation data of the local field. Results indicated that the minimum safe distance between the two subgrades is 45–50 times the subgrade height when the Qinghai-Tibet Expressway is located at the downwind direction of the Qinghai-Tibet Railway,and 50 times the subgrade height when the former is located at the upwind direction of the latter. These results have guiding significance for the route selection,survey,and design of the Qinghai-Tibet Expressway at the blown sand sections and for the traffic line projects in other similar sandy regions.