Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being in...Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety contr...Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety control technology of cadmium in rice grain was summarized in this paper. We hoped to lay a foundation for the safety production of rice.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs)...Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.展开更多
Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in tur...Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in turn, can help achieve sustainable development goals in urban areas. This pilot study uses wearable technology data to present a new method for measuring pedestrian stress in urban environments and the results were presented as an interactive geographic information system map to support risk-informed decision-making. The approach involves analyzing data from wearable devices using heart rate variability (RMSSD and slope analysis) to identify high-stress locations. This data-driven approach can help urban planners and safety experts identify and address pedestrian stressors, ultimately creating safer, more walkable cities. The study addresses a significant challenge in pedestrian safety by providing insights into factors and locations that trigger stress in pedestrians. During the pilot study, high-stress pedestrian experiences were identified due to issues like pedestrian-scooter interaction on pedestrian paths, pedestrian behavior around high foot traffic areas, and poor visibility at pedestrian crossings due to inadequate lighting.展开更多
Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and hu...Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and human intervention [1]. This study investigates the efficacy of a novel fire suppression technology—the Exploding Fire Extinguishing Ball (EFEB) —as an alternative and complementary fire safety solution for commercial vehicles. The research employs a multidisciplinary approach, encompassing engineering, materials science, fire safety, and human factors analysis. A systematic literature review establishes a comprehensive understanding of existing fire suppression technologies, including EFEBs. Subsequently, this study analyzes the unique features of EFEBs, such as automatic activation, as well as manual activation upon exposure to fire, and their potential to provide rapid, localized, and autonomous fire suppression. The study presents original experimental investigations to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. Experiments include controlled fires in confined spaces and dynamic simulations to emulate real-world fire incidents. Data on activation times, extinguishing capability, and coverage area are collected and analyzed to compare the efficacy of EFEBs with traditional fire extinguishing methods. Furthermore, this research shows the practical aspects of implementing EFEBs in commercial vehicles. A feasibility study examines the integration challenges, cost-benefit analysis, and potential regulatory implications. The study also addresses the impact of EFEBs on vehicle weight, stability, and overall safety. Human factors and user acceptance are crucial elements in adopting new safety technologies. Therefore, this research utilizes an experimental design to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. This dissertation presents original controlled experiments to emulate real-world fire incidents, including controlled fires in confined spaces and dynamic simulations. The experimental approach ensures rigorous evaluation and objective insights into EFEBs’ potential as an autonomous fire suppression system for commercial vehicles. This includes the perspectives of drivers, passengers, fleet operators, insurance agencies, and regulatory bodies. Factors influencing trust, perceived safety, and willingness to adopt EFEBs are analyzed to provide insights into the successful integration of this technology. The findings of this research will contribute to the knowledge of fire safety technology and expand the understanding of the applicability of EFEBs in commercial vehicles.展开更多
The safety of agricultural industry in Hunan Province shows an upward trend from"basically safe"to"very safe",but the state in the"safe"or"very safe"range is still unstable.In v...The safety of agricultural industry in Hunan Province shows an upward trend from"basically safe"to"very safe",but the state in the"safe"or"very safe"range is still unstable.In view of this,Hunan Province should guarantee the agricultural production ability,cultivate and enhance the core competitiveness of agriculture,firmly grasp the agricultural control power,attach importance to the export quality of agri-cultural products and other aspects to ensure the safety of agricultural industry.展开更多
VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed st...VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed study focuses on simulating combined scenarios involving steam generator tube rupture (SGTR) and AC power loss using core algorithms and models within personal computer transient analyzer (PCTRAN). Reactor kinetic equations, thermal-hydraulic balance, and safety system models are discussed to elucidate their role in simulating SGTR and AC power loss. Safety criteria, boundaries and initial conditions are outlined to provide a comprehensive understanding of the simulation framework. The analysis delves into dynamic behavior of VVER-1200, placing emphasis on thermal-hydraulic implications, essential reactor parameters, and radiation monitoring to facilitate impact evaluation. Continuous monitoring and maintenance of safety systems are underscored to ensure stable core cooling, particularly during proposed transient conditions. Through meticulous analysis and comparison with established benchmarks, this study contributes to bolstering the safety and reliability of VVER-1200 reactors by identifying vulnerabilities, assessing mitigation strategies, and refining emergency response protocols. Practical implications of this study offer a crucial understanding of reactor behavior, safety system performance, and emergency response strategies, thereby improving safety, optimizing operational practices, and reducing risks in nuclear reactor accidents.展开更多
This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficien...This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficiencies such as inadequate safety systems and insufficient awareness among personnel.The study emphasizes the necessity of tailored safety management systems,the integration of digital tracking technologies like Radio Frequency Identification,and enhanced safety training for staff.The proposed recommendations aim to mitigate risks and enhance laboratory safety and efficiency.In conclusion,the paper asserts that a comprehensive approach,encompassing improved management systems,technological advancements,and educational initiatives,is essential for safer chemical handling in academic research environments.展开更多
With the accelerating pace of urbanization,the development and application of urban underground space has attracted much attention.In the construction of urban underground space,geotechnical engineering safety is the ...With the accelerating pace of urbanization,the development and application of urban underground space has attracted much attention.In the construction of urban underground space,geotechnical engineering safety is the key point for construction.Based on this,this paper analyzes the application of geotechnical engineering safety technology in urban underground space construction,in hope that this analysis can provide a scientific reference for the rational application of geotechnical engineering safety technology as well as the construction and development of urban underground space.展开更多
With the coordinated development of social economy and technology today,various advanced construction techniques and well-established management measures have begun to be widely used in coal-tunnel construction.Howeve...With the coordinated development of social economy and technology today,various advanced construction techniques and well-established management measures have begun to be widely used in coal-tunnel construction.However,in the construction process of low-gas tunnels,it will also cause a certain degree of adverse impact on the construction quality and safety due to the lack of technical experience and management experience to a certain extent.Based on this,this paper takes the actual tunnel project of a coal mine as an example to analyze the main construction technology and safety management measures of low-gas tunnels,so as to provide guarantee for the quality and safety of such tunnel construction.展开更多
With the acceleration of urbanization and the continuous improvement of urban infrastructure construction,roads and bridges,as an important infrastructure content in China,directly affect people's daily travel.The...With the acceleration of urbanization and the continuous improvement of urban infrastructure construction,roads and bridges,as an important infrastructure content in China,directly affect people's daily travel.Therefore,the construction and management of roads and bridges must be improved to ensure the quality and safety of roads and bridges and effectively prevent safety accidents.Strengthen the management of road and bridge construction through safety monitoring,improve the safety factor of the project and ensure people's travel safety.This paper mainly analyzes the common diseases and construction technology of road and bridge engineering construction,and puts forward safety monitoring measures.展开更多
As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of r...As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of rural tourism safety management. Based on the latitude of technological support, from the perspective of management practice of rural tourism safety, through analysis on inner symbiosis of management and technological support of rural tourism safety, the paper had studied three parts of control and management system of rural tourism safety, which were rural tourism safety identification, rural tourism safety isolation and control, and rural tourism safety treatment and solution; and the connotation of technological support during safety management had been discussed from the three aspects. It hoped to serve as reference for tourism safety management and control, so as to promote healthy, stable and sustainable development of tourism.展开更多
Ethics and governance are vital to the healthy and sustainable development of artificial intelligence(AI).With the long-term goal of keeping AI beneficial to human society,governments,research organizations,and compan...Ethics and governance are vital to the healthy and sustainable development of artificial intelligence(AI).With the long-term goal of keeping AI beneficial to human society,governments,research organizations,and companies in China have published ethical guidelines and principles for AI,and have launched projects to develop AI governance technologies.This paper presents a survey of these efforts and highlights the preliminary outcomes in China.It also describes the major research challenges in AI governance research and discusses future research directions.展开更多
The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. Th...The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.展开更多
The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic pe...The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.展开更多
Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power system...Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power systems. Moreover, currently in the developing countries, there are no highly skilled personnel to provide construction and reliable and safe operation of the nuclear plants, which are complex and potentially hazardous systems. In some countries, the level of terroristic threat is extremely high. For that reason, there are specific requirements to the nuclear PSs intended for use in the developing countries. In the presented report, the specific requirements which must be met by the NPT proposed for use in developing countries are formulated, basic statements of the SVBR-100 concept are presented, design and principal scheme of the reactor fa-ility are described, major characteristics of SVBR-100 are summarized.展开更多
This paper describes the multimedia technology applied to the safety monitoring, management dispatching and production commanding system in the coal mine, analyzes and studies the methods of compression hased on model...This paper describes the multimedia technology applied to the safety monitoring, management dispatching and production commanding system in the coal mine, analyzes and studies the methods of compression hased on model data. In the system a multimedia computer is used to control a subsystem of safety monitoring, a subsystem of attendance management. and a subsystem of industrial TV. The multimedia computer will process the information of graphs. texts, sounds, pictures and images etc. It has the functions of real-time monitoring, emergency rescuing and accident analyzing.展开更多
文摘Safety is paramount in coal mining as it affects efficiency.Thus,it is essential to enhance the management of coal mine safety.With the ongoing advancement of modern technologies,more innovative solutions are being integrated into the safety management of coal mining,including virtual simulation technology.This paper focuses on analyzing and researching the application of virtual simulation technology in the safety management of coal mining,providing insights for reference.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金Supported by the Twelfth Five-Year National Science and Technology Support Project(2012BAK17B03)National Nature Science Foundation of China(31401356)+1 种基金College Students’ Science and Technology Innovation Activities Project Plan(New Talent Plan) in Zhejiang Province(2013R409036)National College Students’ Innovative Entrepreneurial Training Program~~
文摘Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety control technology of cadmium in rice grain was summarized in this paper. We hoped to lay a foundation for the safety production of rice.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
文摘Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.
文摘Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in turn, can help achieve sustainable development goals in urban areas. This pilot study uses wearable technology data to present a new method for measuring pedestrian stress in urban environments and the results were presented as an interactive geographic information system map to support risk-informed decision-making. The approach involves analyzing data from wearable devices using heart rate variability (RMSSD and slope analysis) to identify high-stress locations. This data-driven approach can help urban planners and safety experts identify and address pedestrian stressors, ultimately creating safer, more walkable cities. The study addresses a significant challenge in pedestrian safety by providing insights into factors and locations that trigger stress in pedestrians. During the pilot study, high-stress pedestrian experiences were identified due to issues like pedestrian-scooter interaction on pedestrian paths, pedestrian behavior around high foot traffic areas, and poor visibility at pedestrian crossings due to inadequate lighting.
文摘Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and human intervention [1]. This study investigates the efficacy of a novel fire suppression technology—the Exploding Fire Extinguishing Ball (EFEB) —as an alternative and complementary fire safety solution for commercial vehicles. The research employs a multidisciplinary approach, encompassing engineering, materials science, fire safety, and human factors analysis. A systematic literature review establishes a comprehensive understanding of existing fire suppression technologies, including EFEBs. Subsequently, this study analyzes the unique features of EFEBs, such as automatic activation, as well as manual activation upon exposure to fire, and their potential to provide rapid, localized, and autonomous fire suppression. The study presents original experimental investigations to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. Experiments include controlled fires in confined spaces and dynamic simulations to emulate real-world fire incidents. Data on activation times, extinguishing capability, and coverage area are collected and analyzed to compare the efficacy of EFEBs with traditional fire extinguishing methods. Furthermore, this research shows the practical aspects of implementing EFEBs in commercial vehicles. A feasibility study examines the integration challenges, cost-benefit analysis, and potential regulatory implications. The study also addresses the impact of EFEBs on vehicle weight, stability, and overall safety. Human factors and user acceptance are crucial elements in adopting new safety technologies. Therefore, this research utilizes an experimental design to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. This dissertation presents original controlled experiments to emulate real-world fire incidents, including controlled fires in confined spaces and dynamic simulations. The experimental approach ensures rigorous evaluation and objective insights into EFEBs’ potential as an autonomous fire suppression system for commercial vehicles. This includes the perspectives of drivers, passengers, fleet operators, insurance agencies, and regulatory bodies. Factors influencing trust, perceived safety, and willingness to adopt EFEBs are analyzed to provide insights into the successful integration of this technology. The findings of this research will contribute to the knowledge of fire safety technology and expand the understanding of the applicability of EFEBs in commercial vehicles.
基金Supported by Hunan Provincial Philosophy and Social Science Fund Project"Hunan Agricultural Industry Safety Assessment and Early Warning Research"(22YBA161).
文摘The safety of agricultural industry in Hunan Province shows an upward trend from"basically safe"to"very safe",but the state in the"safe"or"very safe"range is still unstable.In view of this,Hunan Province should guarantee the agricultural production ability,cultivate and enhance the core competitiveness of agriculture,firmly grasp the agricultural control power,attach importance to the export quality of agri-cultural products and other aspects to ensure the safety of agricultural industry.
文摘VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed study focuses on simulating combined scenarios involving steam generator tube rupture (SGTR) and AC power loss using core algorithms and models within personal computer transient analyzer (PCTRAN). Reactor kinetic equations, thermal-hydraulic balance, and safety system models are discussed to elucidate their role in simulating SGTR and AC power loss. Safety criteria, boundaries and initial conditions are outlined to provide a comprehensive understanding of the simulation framework. The analysis delves into dynamic behavior of VVER-1200, placing emphasis on thermal-hydraulic implications, essential reactor parameters, and radiation monitoring to facilitate impact evaluation. Continuous monitoring and maintenance of safety systems are underscored to ensure stable core cooling, particularly during proposed transient conditions. Through meticulous analysis and comparison with established benchmarks, this study contributes to bolstering the safety and reliability of VVER-1200 reactors by identifying vulnerabilities, assessing mitigation strategies, and refining emergency response protocols. Practical implications of this study offer a crucial understanding of reactor behavior, safety system performance, and emergency response strategies, thereby improving safety, optimizing operational practices, and reducing risks in nuclear reactor accidents.
文摘This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficiencies such as inadequate safety systems and insufficient awareness among personnel.The study emphasizes the necessity of tailored safety management systems,the integration of digital tracking technologies like Radio Frequency Identification,and enhanced safety training for staff.The proposed recommendations aim to mitigate risks and enhance laboratory safety and efficiency.In conclusion,the paper asserts that a comprehensive approach,encompassing improved management systems,technological advancements,and educational initiatives,is essential for safer chemical handling in academic research environments.
文摘With the accelerating pace of urbanization,the development and application of urban underground space has attracted much attention.In the construction of urban underground space,geotechnical engineering safety is the key point for construction.Based on this,this paper analyzes the application of geotechnical engineering safety technology in urban underground space construction,in hope that this analysis can provide a scientific reference for the rational application of geotechnical engineering safety technology as well as the construction and development of urban underground space.
文摘With the coordinated development of social economy and technology today,various advanced construction techniques and well-established management measures have begun to be widely used in coal-tunnel construction.However,in the construction process of low-gas tunnels,it will also cause a certain degree of adverse impact on the construction quality and safety due to the lack of technical experience and management experience to a certain extent.Based on this,this paper takes the actual tunnel project of a coal mine as an example to analyze the main construction technology and safety management measures of low-gas tunnels,so as to provide guarantee for the quality and safety of such tunnel construction.
文摘With the acceleration of urbanization and the continuous improvement of urban infrastructure construction,roads and bridges,as an important infrastructure content in China,directly affect people's daily travel.Therefore,the construction and management of roads and bridges must be improved to ensure the quality and safety of roads and bridges and effectively prevent safety accidents.Strengthen the management of road and bridge construction through safety monitoring,improve the safety factor of the project and ensure people's travel safety.This paper mainly analyzes the common diseases and construction technology of road and bridge engineering construction,and puts forward safety monitoring measures.
基金Supported by Foundation Item of Natural Science of Fujian Province(2010J05149)Project of Minjiang College(YSY09001B)~~
文摘As the sources of overt and covert potential safety hazards were widespread, the safety control and management of rural tourism became more complicated and difficult, which required more for technological support of rural tourism safety management. Based on the latitude of technological support, from the perspective of management practice of rural tourism safety, through analysis on inner symbiosis of management and technological support of rural tourism safety, the paper had studied three parts of control and management system of rural tourism safety, which were rural tourism safety identification, rural tourism safety isolation and control, and rural tourism safety treatment and solution; and the connotation of technological support during safety management had been discussed from the three aspects. It hoped to serve as reference for tourism safety management and control, so as to promote healthy, stable and sustainable development of tourism.
文摘Ethics and governance are vital to the healthy and sustainable development of artificial intelligence(AI).With the long-term goal of keeping AI beneficial to human society,governments,research organizations,and companies in China have published ethical guidelines and principles for AI,and have launched projects to develop AI governance technologies.This paper presents a survey of these efforts and highlights the preliminary outcomes in China.It also describes the major research challenges in AI governance research and discusses future research directions.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B12022)
文摘The relationship between the opposing left-turn conflict and the traffic participants was analyzed in this study. Based on the traffic conflict technology, the image data were collected in a real traffic situation. The relationship was investigated under two different conditions. The number of opposing left-turn conflicts was positively correlated with the number of left-turn vehicles while the ratio of left-turn vehicles to opposing vehicles was less than 1, and showed a positive correlation with the number of opposing-through vehicles when the ratio of left-turn vehicles to opposing vehi- cles was more than 1. In other words, the opposing left-turn risk was positively correlated with the number of the minor traffic participants, which had a negative effect on the whole traffic system op- eration.
基金Supported by " Research on The Control Technology of Subtropical Agriculture Pollution System" Special Project of National Environment Protection Public Welfare Industry Science Research "Research on The Construction Strategy of Ecological Civilization" Development Plan Research Project of State Development and Reform Commission+1 种基金Xiangxiang " High-output and Efficient Cultivation of High Quality Rice and Processing Technology Industrialization Demonstration " in The Plan Test Site of National Science and Technology Enriching People and Developing County Special Project Action" Xiangxiang Middle and Long-term Development Plan of Modern Agriculture" of Subtropical Agriculture Ecology Institute in Chinese Academy of Science
文摘The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.
文摘Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power systems. Moreover, currently in the developing countries, there are no highly skilled personnel to provide construction and reliable and safe operation of the nuclear plants, which are complex and potentially hazardous systems. In some countries, the level of terroristic threat is extremely high. For that reason, there are specific requirements to the nuclear PSs intended for use in the developing countries. In the presented report, the specific requirements which must be met by the NPT proposed for use in developing countries are formulated, basic statements of the SVBR-100 concept are presented, design and principal scheme of the reactor fa-ility are described, major characteristics of SVBR-100 are summarized.
文摘This paper describes the multimedia technology applied to the safety monitoring, management dispatching and production commanding system in the coal mine, analyzes and studies the methods of compression hased on model data. In the system a multimedia computer is used to control a subsystem of safety monitoring, a subsystem of attendance management. and a subsystem of industrial TV. The multimedia computer will process the information of graphs. texts, sounds, pictures and images etc. It has the functions of real-time monitoring, emergency rescuing and accident analyzing.