目的:探讨藏红花素对卵巢癌HO-8910细胞自噬的影响及其分子机制。方法:用Western印迹法测定内源性LC3B-II蛋白的稳态水平以及MTOR及其下游底物的磷酸化水平。用荧光和共聚焦显微镜检测GFP-LC3B斑点的分布。结果:与对照细胞相比,用不同...目的:探讨藏红花素对卵巢癌HO-8910细胞自噬的影响及其分子机制。方法:用Western印迹法测定内源性LC3B-II蛋白的稳态水平以及MTOR及其下游底物的磷酸化水平。用荧光和共聚焦显微镜检测GFP-LC3B斑点的分布。结果:与对照细胞相比,用不同浓度的藏红花素处理的HO-8910细胞中内源性LC3B-II蛋白的稳态水平和GFP-LC3B斑点的分布以剂量依赖的方式增强。用藏红花素处理HO-8910细胞后,MTOR及其下游底物的磷酸化水平显著降低。结论:藏红花素通过抑制MTOR信号通路促进卵巢癌HO-8910细胞自噬体的形成。Aims: To investigate the mechanism through which crocin influences the autophagy of ovarian cancer HO-8910 cells. Methods: Western blotting assay was used to determine the steady-state levels of endogenous LC3B-II protein and the phosphorylation level of MTOR and its downstream substrates. Fluorescence and confocal microscopy was used to detect the distribution of GFP-LC3B puncta. Results: Compared to the control cells, the steady-state levels of endogenous LC3B-II protein and the distribution of GFP-LC3B puncta were enhanced in the HO-8910 cells treated with various concentration of crocin in a dose-dependent manner. Following treatment of HO-8910 cells with crocin, the phosphorylation level of MTOR and its downstream substrates decreased significantly. Conclusions: Crocin promotes the formation of autophagosome in ovarian cancer HO-8910 cells by inhibiting the MTOR signaling pathway.展开更多
文摘目的:探讨藏红花素对卵巢癌HO-8910细胞自噬的影响及其分子机制。方法:用Western印迹法测定内源性LC3B-II蛋白的稳态水平以及MTOR及其下游底物的磷酸化水平。用荧光和共聚焦显微镜检测GFP-LC3B斑点的分布。结果:与对照细胞相比,用不同浓度的藏红花素处理的HO-8910细胞中内源性LC3B-II蛋白的稳态水平和GFP-LC3B斑点的分布以剂量依赖的方式增强。用藏红花素处理HO-8910细胞后,MTOR及其下游底物的磷酸化水平显著降低。结论:藏红花素通过抑制MTOR信号通路促进卵巢癌HO-8910细胞自噬体的形成。Aims: To investigate the mechanism through which crocin influences the autophagy of ovarian cancer HO-8910 cells. Methods: Western blotting assay was used to determine the steady-state levels of endogenous LC3B-II protein and the phosphorylation level of MTOR and its downstream substrates. Fluorescence and confocal microscopy was used to detect the distribution of GFP-LC3B puncta. Results: Compared to the control cells, the steady-state levels of endogenous LC3B-II protein and the distribution of GFP-LC3B puncta were enhanced in the HO-8910 cells treated with various concentration of crocin in a dose-dependent manner. Following treatment of HO-8910 cells with crocin, the phosphorylation level of MTOR and its downstream substrates decreased significantly. Conclusions: Crocin promotes the formation of autophagosome in ovarian cancer HO-8910 cells by inhibiting the MTOR signaling pathway.