In landmark-based way-finding,determining the most salient landmark from several candidates at decision points is challenging.To overcome this problem,current approaches usually rely on a linear model to measure the s...In landmark-based way-finding,determining the most salient landmark from several candidates at decision points is challenging.To overcome this problem,current approaches usually rely on a linear model to measure the salience of landmarks.However,linear models are not always able to establish an accurate quantitative relationship between the attributes of a landmark and its perceived salience.Furthermore,the numbers of evaluated scenes and of volunteers participating in the testing of these models are often limited.With the aim of overcoming these gaps,we propose learning a non-linear salience model by means of genetic programming.We compared our proposed approach with conventional algorithms by using photographs of two hundred test scenes collected from two shopping malls.Two hundred volunteers who were not in these environments were asked to answer questionnaires about the collected photographs.The results from this experiment showed that in 76%of the cases,the most salient landmark(according to the volunteers’perception)was correctly predicted by our proposed approach.This accuracy rate is considerably higher than the ones achieved by conventional linear models.展开更多
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ...Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.展开更多
In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on...In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.展开更多
Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel se...Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel segmentation.A saliency image is used as the input of the GNET model replacing the original image.The GNET model adopts a bilaterally symmetrical structure.In the left structure,the first layer is upsampling and the other layers are max-pooling.In the right structure,the final layer is max-pooling and the other layers are upsampling.The proposed approach is evaluated using the DRIVE database.Experimental results indicate that the GNET model can obtain more precise features and subtle details than the UNET models.The proposed algorithm performs well in extracting vessel networks,and is more accurate than other deep learning methods.Retinal vessel segmentation can help extract vessel change characteristics and provide a basis for screening the cerebrovascular diseases.展开更多
Since of the scale and the various shapes of down in the image,it is difficult for traditional image recognition method to correctly recognize the type of down image and get the required recognition accuracy,even for ...Since of the scale and the various shapes of down in the image,it is difficult for traditional image recognition method to correctly recognize the type of down image and get the required recognition accuracy,even for the Traditional Convolutional Neural Network(TCNN).To deal with the above problems,a Deep Convolutional Neural Network(DCNN)for down image classification is constructed,and a new weight initialization method is proposed.Firstly,the salient regions of a down image were cut from the image using the visual saliency model.Then,these salient regions of the image were used to train a sparse autoencoder and get a collection of convolutional filters,which accord with the statistical characteristics of dataset.At last,a DCNN with Inception module and its variants was constructed.To improve the recognition accuracy,the depth of the network is deepened.The experiment results indicate that the constructed DCNN increases the recognition accuracy by 2.7% compared to TCNN,when recognizing the down in the images.The convergence rate of the proposed DCNN with the new weight initialization method is improved by 25.5% compared to TCNN.展开更多
基金the National Key R&D Program of China(No.2016YFB0502203)the National Natural Science Foundation of China(Grant No.41271440)the China Scholarship Council.
文摘In landmark-based way-finding,determining the most salient landmark from several candidates at decision points is challenging.To overcome this problem,current approaches usually rely on a linear model to measure the salience of landmarks.However,linear models are not always able to establish an accurate quantitative relationship between the attributes of a landmark and its perceived salience.Furthermore,the numbers of evaluated scenes and of volunteers participating in the testing of these models are often limited.With the aim of overcoming these gaps,we propose learning a non-linear salience model by means of genetic programming.We compared our proposed approach with conventional algorithms by using photographs of two hundred test scenes collected from two shopping malls.Two hundred volunteers who were not in these environments were asked to answer questionnaires about the collected photographs.The results from this experiment showed that in 76%of the cases,the most salient landmark(according to the volunteers’perception)was correctly predicted by our proposed approach.This accuracy rate is considerably higher than the ones achieved by conventional linear models.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1564201,61573171,61403172,51305167)China Postdoctoral Science Foundation(Grant Nos.2015T80511,2014M561592)+3 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140555)Six Talent Peaks Project of Jiangsu Province,China(Grant Nos.2015-JXQC-012,2014-DZXX-040)Jiangsu Postdoctoral Science Foundation,China(Grant No.1402097C)Jiangsu University Scientific Research Foundation for Senior Professionals,China(Grant No.14JDG028)
文摘Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.
基金supported by National Natural Science Foundation of China under Grant No.610700800973 Sub-Program Projects under Grant No.2009CB320906+3 种基金National Science and Technology of Major Special Projects under Grant No.2010ZX03004-003S&T Planning Project of Hubei Provincial Department of Education under Grant No. Q20112805H&SPlanning Project of Hubei Provincial Department of Education under Grant No.2011jyte142Science Foundation of HubeiProvincial under Grant No.2010CDB05103
文摘In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.
基金Project supported by the Natural Science Foundation of Fujian Province,China(No.2016J0129)the Educational Commission of Fujian Province of China(No.JAT170180)
文摘Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel segmentation.A saliency image is used as the input of the GNET model replacing the original image.The GNET model adopts a bilaterally symmetrical structure.In the left structure,the first layer is upsampling and the other layers are max-pooling.In the right structure,the final layer is max-pooling and the other layers are upsampling.The proposed approach is evaluated using the DRIVE database.Experimental results indicate that the GNET model can obtain more precise features and subtle details than the UNET models.The proposed algorithm performs well in extracting vessel networks,and is more accurate than other deep learning methods.Retinal vessel segmentation can help extract vessel change characteristics and provide a basis for screening the cerebrovascular diseases.
基金supported by the Natural Science Foundation of Hebei Provence[grant numbers:F2015201033,F2017201069]the foundation of H3C[grant number:2017A20004]。
文摘Since of the scale and the various shapes of down in the image,it is difficult for traditional image recognition method to correctly recognize the type of down image and get the required recognition accuracy,even for the Traditional Convolutional Neural Network(TCNN).To deal with the above problems,a Deep Convolutional Neural Network(DCNN)for down image classification is constructed,and a new weight initialization method is proposed.Firstly,the salient regions of a down image were cut from the image using the visual saliency model.Then,these salient regions of the image were used to train a sparse autoencoder and get a collection of convolutional filters,which accord with the statistical characteristics of dataset.At last,a DCNN with Inception module and its variants was constructed.To improve the recognition accuracy,the depth of the network is deepened.The experiment results indicate that the constructed DCNN increases the recognition accuracy by 2.7% compared to TCNN,when recognizing the down in the images.The convergence rate of the proposed DCNN with the new weight initialization method is improved by 25.5% compared to TCNN.