期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa 被引量:1
1
作者 Lishuang Zhang Yugang Sun +7 位作者 Jinqiang Ji Weidi Zhao Weileng Guo Jiaqi Li Yan Bai Dan Wang Zhe Yan Changhong Guo 《The Crop Journal》 SCIE CSCD 2023年第4期1218-1229,共12页
Alfalfa(Medicago sativa L.) is one of the most extensively grown leguminous forage worldwide.Environmental saline-alkali stress significantly influences the growth,development,and yield of alfalfa,posing a threat to i... Alfalfa(Medicago sativa L.) is one of the most extensively grown leguminous forage worldwide.Environmental saline-alkali stress significantly influences the growth,development,and yield of alfalfa,posing a threat to its agricultural production.However,little is known about the potential mechanisms by which alfalfa responds to saline-alkali stress.Here,we investigated these mechanisms by cloning a saline-alkali-induced flavonol synthase gene(Ms FLS13) from alfalfa,which was previously reported to be significantly upregulated under saline-alkali stress,and examining its function in the saline-alkali response.Overexpression of Ms FLS13 in alfalfa promoted plant tolerance to saline-alkali stress by enhancing flavonol accumulation,antioxidant capacity,osmotic balance,and photosynthetic efficiency.Conversely,Ms FLS13 inhibition using RNA interference reduced flavonol synthase activity and inhibited hairy root growth under saline-alkali stress.Yeast one-hybrid and dual-luciferase reporter assays indicated that the R2R3-MYB Ms MYB12 transcription factor activates Ms FLS13 expression by binding to the MBS motif in the Ms FLS13 promoter.Further analysis revealed that abscisic acid mediates the salinealkali stress response partially by inducing Ms MYB12 and Ms FLS13 expression,which consequently increases flavonol levels and maintains antioxidant homeostasis in alfalfa.Collectively,our findings highlight the crucial role of Ms FLS13 in alfalfa in response to saline-alkali stress and provide a novel genetic resource for creating saline-alkali-resistant alfalfa through genetic engineering. 展开更多
关键词 ALFALFA saline-alkali Msfls13 Msmyb12 ANTIOXIDANT
下载PDF
Arbuscular Mycorrhizal Fungal Colonization at Different Succession Stages in Songnen Saline-Alkali Grassland
2
作者 Yajie Liu Yunhui Zhou +1 位作者 Linlin Fang Chunxue Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期297-310,共14页
Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and sc... Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions,roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland.The soil properties and AM fungal colonization were measured,and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target,subsequently,maize was selected as the host to verify its colonization.The results showed that the soil properties improved with the succession of saline-alkali grassland.The plants’communities of the three stages could be colonized by AM fungi,and the colonization rate of Leymus chinensis(the third stage)ranged from 66.67%to 100%,Puccinellia tenuiflora(the second stage)ranged from 50%to 80%,while the Suaeda glauca(the first stage)was only 35%–60%.Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency,relative abundance,and importance value of 100%,18.1%,and 59.1%,respectively.The colonization rate of Glomeraceae sp1 in maize ranged from 80%to 87%and similar mycorrhizal characteristics were detected in the roots of P.tenuiflora,S.glauca,and L.chinensis,indicating that Glomeraceae sp1 colonized the samples in the field.The correlation matrix indicated that colonization rate,colonization intensity,and vesicle abundance were closely related to soil conditions most,and they were related significantly to all the soil properties except cellulase activity.Besides,redundancy analysis(RDA)showed that soil properties drove the changes of AM fungal colonization and sporulation.These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions,and also for the exploration of AM fungi species with great functions. 展开更多
关键词 Succession of saline-alkali land soil properties AM fungi colonization characteristics
下载PDF
Effects of Biochar and Wood Vinegar on Labile Phosphorus Pool in Soda Saline-Alkaline Soil
3
作者 Zhao Wei Liang Ying +1 位作者 Liang Fang-yuan Wang Hong-yan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第2期68-77,共10页
A pot experiment was conducted to research the effect of biochar and wood vinegar on labile phosphorus fractions in saline-alkali soil.There were eight treatments,including CK(0 kg•hm-2 biochar+0 kg•hm-2 wood vinegar)... A pot experiment was conducted to research the effect of biochar and wood vinegar on labile phosphorus fractions in saline-alkali soil.There were eight treatments,including CK(0 kg•hm-2 biochar+0 kg•hm-2 wood vinegar),C1(0.6 t•hm-2 biochar),C2(0.6 t•hm-2 wood vinegar),C3(1.2 t•hm-2 wood vinegar),C4(1.8 t•hm-2 wood vinegar),C5(0.6 t•hm-2 biochar+0.6 t•hm-2 wood vinegar),C6(0.6 t•hm-2 biochar+1.2 t•hm-2 wood vinegar),and C7(0.6 t•hm-2 biochar+1.8 t•hm-2 wood vinegar).The results showed that biochar without wood vinegar and the co-application of biochar and wood vinegar significantly increased soil total phosphorus content.Meanwhile,compared with CK,all of treatments increased resin phosphorus and sodium bicarbonate-extracted inorganic phosphorus(NaHCO3-Pi)contents in saline-alkali soil.Especially,the contents of resin phosphorus and NaHCO3-Pi under C5,C6,and C7 treatments were higher than those of C2,C3,and C4 treatments,respectively,indicating that the increases of labile phosphorus contents under the co-application of biochar and wood vinegar were better than those of the alone application of biochar and wood vinegar.Each treatment increased the proportion of labile phosphorus pool in saline-alkali soil and the proportion of labile phosphorus pool increased with the increase of the amount of wood vinegar.In addition,the application of biochar and wood vinegar increased the 100-grain weight of rice,and C6 treatment had the best effect,increasing the 100-grain weight by 134.35%.Therefore,the application of biochar and wood vinegar in saline-alkali soil could improve the soil phosphorus availability,increase the weight of rice grains,thereby realizing the resource utilization of agricultural waste and the sustainable development of agriculture. 展开更多
关键词 BIOCHAR wood vinegar labile phosphorus fractions saline-alkali soil
下载PDF
Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China 被引量:12
4
作者 HENG Tong LIAO Renkuan +3 位作者 WANG Zhenhua WU Wenyong LI Wenhao ZHANG Jinzhu 《Journal of Arid Land》 SCIE CSCD 2018年第6期932-945,共14页
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig... Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops. 展开更多
关键词 saline-alkali soil drip irrigation flood irrigation sub-surface pipe drainage soil desalination salt leaching arid area
下载PDF
Present situation and tendency of saline-alkali soil in west Jilin Province 被引量:9
5
作者 LIU Hui-qing, XU Jia-wei, WU Xiu-qin (Institute of Urban and Environment Science, Northeast Normal University, Changchun 130024, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期321-328,共8页
Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1... Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed. 展开更多
关键词 saline-alkali soil west Jilin SALINIZATION degraded soil
下载PDF
Osmotic Regulation of Betaine Content in Leymus chinensis Under Saline-alkali Stress and Cloning and Expression of Betaine Aldehyde Dehydrogenase(BADH) Gene 被引量:8
6
作者 CUI Xi-yan WANG Yong GUO Ji-xun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第2期204-209,共6页
The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations. The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BAD... The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations. The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH: EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment; both exhibit a single peak with increasing the concentration of saline-alkali solution, and number V shows the highest value. The BADH gene of Leyrnus chinensis was cloned by RT-PCR and RACE technology and was designated as LcBADH. The cDNA sequence of LcBADH was 1774bp including the open reading frame(ORF) of 1521bp(coding 506 amino acids). The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragmcnt into pET30a(+) and transformed into E. coli BL21(DE3). The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl fl-D-thiogalactoside(IPTG). 展开更多
关键词 Leymus chinensis saline-alkali stress BADH RACE Cloning and expression
下载PDF
Saline-Alkali Tolerance in Rice: Physiological Response, Molecular Mechanism, and QTL Identification and Application to Breeding 被引量:8
7
作者 Ratan Kumar GANAPATI Shahzad Amir NAVEED +2 位作者 Sundus ZAFAR WANG Wensheng XU Jianlong 《Rice science》 SCIE CSCD 2022年第5期412-434,共23页
Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development.Rice(Oryza sativa)is a major food crop greatly affected by soil salinity and alkalinity,requiring tolerant varieties in the sal... Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development.Rice(Oryza sativa)is a major food crop greatly affected by soil salinity and alkalinity,requiring tolerant varieties in the saline-alkali prone areas.Understanding the molecular and physiological mechanisms of saline-alkali tolerance paves the base for improving saline-alkali tolerance in rice and leads to progress in breeding.This review illustrated the physiological consequences,and molecular mechanisms especially signaling and function of regulating genes for saline-alkali tolerance in rice plants.We also discussed QTLs regarding saline-alkali tolerance accordingly and ways of deployment for improvement.More efforts are needed to identify and utilize the identified QTLs for saline-alkali tolerance in rice. 展开更多
关键词 saline-alkali tolerance physiological mechanism molecular mechanism marker-assisted backcrossing RICE
下载PDF
Effect of Saline-alkali Stress on Seed Germination and Seedling Growth of Oat 被引量:6
8
作者 Wang Guijun Wang Lei +1 位作者 Meng Xuan Xu Zhenwen 《Plant Diseases and Pests》 CAS 2015年第2期26-29,41,共5页
Neutral black soil was mixed with strong saline-alkali soil in different weight ratios, then physiological indexes during seed germination and seedling growth in soil of different ratios and the corresponding leaching... Neutral black soil was mixed with strong saline-alkali soil in different weight ratios, then physiological indexes during seed germination and seedling growth in soil of different ratios and the corresponding leaching liquor treatments were observed to explore effect of saline-alkali stress on oat seed germination and seedling growth, and analyze tolerance of oat to saline-alkali soil. The results showed that germination ability of oat seeds reduced with the increasing saline-alkali stress, salt injury index increased and seedling growth was inhibited. Effect of different saline-alkali stresses on germination ability of oat seeds showed difference, and effect of leaching liquor treatment on oat seed germination was stronger than that of soil treatment. 展开更多
关键词 saline-alkali stress OAT Seed germination Growth index INHIBITION
下载PDF
Microbial diversity in the saline-alkali soil of a coastal Tamarix chinensis woodland at Bohai Bay, China 被引量:4
9
作者 LIU Wanqiu ZHANG Wei +2 位作者 LIU Guangxiu ZHANG Yanhua ZHANG Gaosen 《Journal of Arid Land》 SCIE CSCD 2016年第2期284-292,共9页
Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chine... Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes. 展开更多
关键词 coastal saline-alkali soil Tamarix chinensis BACTERIA PYROSEQUENCING
下载PDF
Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichiometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China 被引量:4
10
作者 YANG Yanli MOU Xiaojie +1 位作者 WEN Bolong LIU Xingtu 《Chinese Geographical Science》 SCIE CSCD 2020年第5期934-946,共13页
Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inla... Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred. 展开更多
关键词 inland soda saline-alkali wetland wetland degradation and restoration soil nutrients ecological stoichiometry Phragmites australis
下载PDF
Saline-alkali land in the Yellow River Delta: amelioration zonation based on GIS 被引量:2
11
作者 GUAN Yuan-xiu, LIU Gao-huan, WANG Jin-feng (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期313-320,共8页
Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present ... Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously, zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of saline-alkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different types of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone, relatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone. Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones. 展开更多
关键词 GIS the Yellow River Delta saline-alkali land ZONATION
下载PDF
Overexpression of vacuolar proton pump ATPase(V-H^+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa(Medicago sativa L.) 被引量:5
12
作者 WANG Fa-wei WANG Chao +9 位作者 SUN Yao WANG Nan LI Xiao-wei DONG Yuan-yuan YAO Na LIU Xiu-ming CHEN Huan CHEN Xi-feng WANG Zhen-min LI Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2279-2289,共11页
The vacuolar proton pump ATPase(V-H^+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several ... The vacuolar proton pump ATPase(V-H^+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cell expansion and salt tolerance. In this study, three genes encoding V-H^+-ATPase subunits B(Sc VHA-B, Gen Bank: JF826506), C(Sc VHA-C, Gen Bank: JF826507) and H(Sc VHA-H, Gen Bank: JF826508) were isolated from the halophyte Suaeda corniculata. The transcript levels of Sc VHA-B, Sc VHA-C and Sc VHA-H were increased by salt, drought and saline-alkali treatments. V-H^+-ATPase activity was also examined under salt, drought and saline-alkali stresses. The results showed that V-H^+-ATPase activity was correlated with salt, drought and saline-alkali stress. Furthermore, V-H^+-ATPase subunits B, C and H(Sc VHA-B, Sc VHA-C and Sc VHA-H) from S. corniculata were introduced separately into the alfalfa genome. The transgenic alfalfa was verified by Southern and Northern blot analysis. During salt and saline-alkali stresses, transgenic lines carrying the B, C and H subunits had higher germination rates than the wild type(WT). More free proline, higher superoxide dismutase(SOD) activity and lower malondialdehyde(MDA) levels were detected in the transgenic plants under salt and saline-alkali treatments. Moreover, the Sc VHA-B transgenic lines showed greater tolerance to salt and saline-alkali stresses than the WT. These results suggest that overexpression of Sc VHA-B, Sc VHA-C and Sc VHA-H improves tolerance to salt and saline-alkali stresses in transgenic alfalfa. 展开更多
关键词 vacuolar proton pump salt tolerance saline-alkali tolerance alfalfa
下载PDF
The Salt Reduction and Yield Increase Effects of Smashing Ridging Transforming Saline-alkali Land and Its Development Prospects 被引量:3
13
作者 Wei Benhui Shen Zhangyou +5 位作者 Zhou Jia Zhou Lingzhi Gan Xiuqin Lao Chengying Li Yanying Hu Po 《Meteorological and Environmental Research》 CAS 2018年第4期112-115,120,共5页
Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2... Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed. 展开更多
关键词 Smashing ridging saline-alkali land IMPROVEMENT Salt reduction Yield increase PROSPECT
下载PDF
Synergistic effect of Si and K in improving the growth,ion distribution and partitioning of Lolium perenne L.under saline-alkali stress
14
作者 FAN Yuan SHEN Wu-yan +1 位作者 Pino VANESSA CHENG Fang-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1660-1673,共14页
The application of Si or K has proven to be beneficial for the growth of plants under saline-alkali stress. However, the synergistic effect of Si and K in improving the growth, ion distribution, and partitioning in Lo... The application of Si or K has proven to be beneficial for the growth of plants under saline-alkali stress. However, the synergistic effect of Si and K in improving the growth, ion distribution, and partitioning in Lolium perenne L. under saline-alkali stress remains unclear. In this study, the growth characteristics and ion-selective absorption of ryegrass(Lolium perenne L.) exposed to different levels of saline-alkali stress were evaluated. The growth parameters of ryegrass were significantly improved when Si was applied by itself or coupled with K under low saline-alkali stress. Under a high saline-alkali level, only simultaneous application of Si and K could significantly improve the growth of ryegrass. When Si and K were applied together, the K^(+)/Na^(+) and Ca^(2+)/Na^(+) ratios in root, stem, and leaf of ryegrass were maximally improved as compared to the individual treatments and control. The K^(+) and Ca^(2+) concentrations in the vacuole, cell wall, and organelle of leaf were increased dramatically. This improvement was due to the ability of applied ions to compete with Na^(+), allowing the plant to maintain osmotic potential and leaf water content. The concentration of Na^(+) was significantly reduced when Si and K were applied and mainly concentrated in the soluble fraction and cell wall. The Si concentration in ryegrass increased markedly by the combined application of Si and K, and most of it was accumulated in the cell wall and soluble fraction, which could help in chlorophyll synthesis, reduce membrane injury, and increase water absorption under saline-alkali stress. This study emphasized the advantage of Si and/or K on the growth of plants under different saline-alkaline levels and provided a guide for the production of Si-K fertilizer and its application in saline-alkali soil. 展开更多
关键词 saline-alkali stress SI K ryegrass plants K+/Na+ COMPARTMENTATION
下载PDF
Saline-Alkali(Mixed) Dust Storms and Their Main Generation Mechanism
15
作者 SONG Huailong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期195-195,共1页
The exposed surface of the dry salt lake basin contains a large number of extremely fine lightweight saline-alkali(mixed)dust and clay dust.It is extremely easy to dust and since saline-alkali lake is low-lying and it... The exposed surface of the dry salt lake basin contains a large number of extremely fine lightweight saline-alkali(mixed)dust and clay dust.It is extremely easy to dust and since saline-alkali lake is low-lying and its temperature 展开更多
关键词 Dust Storms and Their Main Generation Mechanism MIXED saline-alkali
下载PDF
Photoresponse Process and Model Comparison of Paeonia ludlowii under Saline-alkali Stress
16
作者 Ge Qingsong Gao Yi +1 位作者 Wang Hang Fang Jiangping 《Meteorological and Environmental Research》 CAS 2019年第4期84-87,92,共5页
The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludl... The research aimed to analyze changes in photosynthetic characteristics of Paeonia ludlowii under saline-alkali stress, and annual seedlings of P. ludlowii were taken as the materials. Photoresponse process of P. ludlowii leaves under saline-alkali stress was simulated, and different models were used to fit photoresponse curve. The results showed that P n of P. ludlowii leaves showed the trend of first rising and then declining with PAR increased under saline-alkali stress;both G s and T r showed a rising trend with PAR increased;C i showed the trend of first declining and then rising with PAR increased. Photoresponse curve fitted by modified rectangular hyperbolic model had the best effect, and it was the optimal fitting model. P. ludlowii could adapt to saline-alkali stress in lower concentration, showing that P. ludlowii could be introduced and cultivated in saline-alkali land at a lower level. 展开更多
关键词 P. ludlowii saline-alkali STRESS PHOTOSYNTHETIC PARAMETERS PHOTORESPONSE MODEL
下载PDF
Significant changes in arbuscular mycorrhizal community and soil physicochemical properties during the saline-alkali grassland vegetation succession
17
作者 YAJIE LIU LINLIN FANG CHUNXUE YANG 《BIOCELL》 SCIE 2022年第11期2475-2488,共14页
Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to ... Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession. 展开更多
关键词 AM fungal community High-throughput sequencing Succession of saline-alkali land Soil physicochemical characteristics
下载PDF
Effects of Soil Improver on Wheat in Saline-Alkali Lands in the Yellow River Delta
18
作者 Liang DONG Shenzhong TIAN +6 位作者 Zeqiang SUN Xuejun WANG Zhaohui LIU Ruiqin LI Ye TIAN Deshui TAN Jiafa LUO 《Agricultural Biotechnology》 CAS 2019年第2期133-136,共4页
Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil ... Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat. 展开更多
关键词 SOIL improver saline-alkali LAND WHEAT
下载PDF
Effects of Different Halophytes on Soil Microflora and Enzyme Acti-vities of Saline-alkali Soil
19
作者 Wang Xue-qin Zhang Feng-ju +1 位作者 Xu Xing Lu An-qiao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期28-36,共9页
In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the p... In the pot experiment,seven varieties of halophytes were grown in saline-alkali soil to investigate the responses of microflora and soil enzymes in the rhizosphere.The results showed that compared to the control,the population of bacterial colony(84.8%-95.6%),actinomycetes colony(12.0%-14.5%)and fungi colony(0.5%-1.1%)increased significantly(P<0.05).The population of ammonia bacteria,aerobic cellulose decomposition bacteria in the soil of Vicia sativa L.(201.99%and 395.49%),Medicago sativa(152.43%and 319.90%)and Sesbania cannabina(Retz.)Pori(193.14%and 396.08%)were higher significantly than that of Panicum virgatum L.(49%and 60%),Sorghum bicolor(L.)Moench(99%and 210%),Amaranthus hypochondriacus L.(75%and 36%)and Aneurotepidimu chinense(75%and 77%)(P<0.05).However,Sorghum bicolor(L.)Moench was evidently higher than Panicum virgatum L.,Amaranthus hypochondriacus L.and Aneurotepidimu chinense(P<0.05)in the soil.The population of ammonia bacteria and aerobic cellulose-decomposing bacteria was significantly correlated with the five enzymes(P<0.05),which could improve the microenvironment in saline-alkali soil to accelerate the element cycling and promote the sustainable development of agriculture through cultivating Medicago sativa,Vicia sativa L.,Sesbania cannabina(Retz.)Pori and Sorghum bicolor(L.)Moench. 展开更多
关键词 saline-alkali soil HALOPHYTES MICROFLORA soil enzyme functional microbial population
下载PDF
Research Progress on the Mechanism of Crop Saline-alkali Tolerance and Mitigation Measures
20
作者 Ting XU Yantao LIU 《Agricultural Biotechnology》 CAS 2021年第5期74-78,共5页
The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and qual... The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and quality.In this article,we summarized the germination status,physiological characteristics,response mechanisms and mitigation measures of different crops under saline-alkali stress in recent years,aiming to provide important reference for the study of saline-alkali tolerance mechanism in crops,cultivation of crop varieties tolerant to salts and alkalis and improvement of the utilization rate of saline-alkali land,and put forward suggestions for future development trend of saline-alkali land crops and mitigation measures. 展开更多
关键词 saline-alkali stress CROP Response mechanism Mitigation measures Research progress
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部