期刊文献+
共找到484篇文章
< 1 2 25 >
每页显示 20 50 100
Amelioration of Saline-Sodic Soils with Tillage Implements and Sulfuric Acid Application 被引量:28
1
作者 M.SADIQ G.HASSAN +2 位作者 S. M. MEHDI N. HUSSAIN M. JAMIL 《Pedosphere》 SCIE CAS CSCD 2007年第2期182-190,共9页
Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requireme... Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils. 展开更多
关键词 AMELIORATION saline-sodic soils salinity parameters sulfuric acid tillage implements
下载PDF
Effects of Biochar Application on Soil Organic Carbon in Degraded Saline-sodic Wetlands of Songnen Plain,Northeast China 被引量:1
2
作者 CHE Qianjin LI Min +1 位作者 ZHANG Zhongsheng 《Chinese Geographical Science》 SCIE CSCD 2021年第5期877-887,共11页
Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By... Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By comparing soil organic carbon(SOC)contents change before and after biochar addition,we deciphered the driving factors or processes that control SOC change in response to biochar application.A limited increase in SOC was observed,about by 1.16%-12.80%,even when biochar was applied at the rate of 10%of bulk soil weight.Biochar application enhanced soil dissolved organic carbon(DOC)significantly by up to 67%.It was estimated that about 50%SOC was allocated to small macroaggregates(250-2000μm,CPOC),and SOC in silt and clay-sized particles(<53μm)decreased obviously after biochar addition.Microbial biomass increased with biochar amendment,of which actinomycetes(ACT),fungus(FUN),protozoon(PRO),and bacteria with straight-chain saturated fatty acids(OB)increased remarkably.Multiple linear regression models implied that DOC was governed by ACT and soil N∶P ratio,while SOC mostly depended on CPOC.The principal component analysis and the partial least square path model(PLS-PM)indicated that biochar addition aggravated nitrogen limitation in saline-sodic soils,and effects of microorganisms on regulating SOC greatly depended on nitrogen bioavailability.Biochar application had vastly changed interactions between environmental factors and SOC in saline-sodic soils.Effects of nutrients on SOC shifted to great inhibition from strong stimulation after biochar addition,meanwhile,aggregation was the only factor presenting positive effects on SOC.How to eliminate nutrient limitation and better soil aggregation process should be considered in priority when biochar was used to improve SOC in saline-sodic soils. 展开更多
关键词 BIOCHAR saline-sodic soil soil organic carbon phospholipid fatty acid NUTRIENT Songnen Plain China
下载PDF
GROUND WATER QUALITY IN THE INDUS PLAINS OF PAKISTAN AND ITS USE FOR CROP PRODUCTION DURING RECLAMATION OF SALINE-SODIC SOILS
3
作者 A.Ghafoor M.Qadir 《干旱区资源与环境》 CSCD 1993年第Z1期143-144,共2页
The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 mi... The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 million hectares are cultivated. At present, 103 millionacre-feet river flow is diverted into irrigation canals. In addition, 42 million acre feet of thegroundwater are being pumped through 257697 tubewells to supplement the canal supplies. 展开更多
关键词 IRRIGATION Water saline-sodic soil CROP Production
下载PDF
A Practical Model for Desodification of Saline-Sodic Soils of Central Khuzestan Plains, Khuzestan Province
4
作者 Aslan Egdernezhad Heydar Ali Kashkuli +1 位作者 Ebrahim Pazira Hossein Sedghi 《Open Journal of Geology》 2016年第8期740-744,共6页
The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for... The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models. 展开更多
关键词 Desodification Curve saline-sodic soils Salt Leaching MODELING
下载PDF
Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review 被引量:44
5
作者 JU Xiao-tang ZHANG Chong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2848-2862,共15页
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop prod... The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The “non-coupled strong ammonia oxidation” process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products. 展开更多
关键词 N transformation NH3 volatilization ammonia oxidation NO3- leaching N2O emission upland agricultural soils
下载PDF
Nitrous oxide fluxes from upland soils in central Hokkaido,Japan 被引量:10
6
作者 Sonoko D.KIMURA Yo TOMA Ryusuke HATANO 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1312-1322,共11页
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido... Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido,Japan.The annual mean N2O fluxes ranged from 2.95 to 164.17 μgN/(m2·h),with the lowest observed in a grassland and the highest in an onion field.The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall eve... 展开更多
关键词 mineral N pool N2O flux soil upland cropping system
下载PDF
Effects of Long-term Fertilization on Soil M icrobial Com m unity Structure,Labile Organic Carbon and Nitrogen and Enzym e Activity in Paddy Field and Upland 被引量:4
7
作者 Wang Guiyue Su Ting +3 位作者 Han Hailiang Tan Heping Bao Fei Zhao Fucheng 《Meteorological and Environmental Research》 CAS 2019年第5期105-111,共7页
To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was c... To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility. 展开更多
关键词 Long-term fertilization Paddy field upland Microbial community STRUCTURE soil enzyme ACTIVITY
下载PDF
Nitrogen Mineralization Potentials of Upland Soils inCentral China 被引量:4
8
作者 CHENJIA-ZHOU QINHUA-CHANG 《Pedosphere》 SCIE CAS CSCD 1995年第2期127-133,共7页
Nitrogen mineralization potentials of 15 soil samples were studied by the methods of soil asrobic incuba-tion, and the correlation between the potentials and the amounts of nitrogen taken up by rye grass (Lolium.multi... Nitrogen mineralization potentials of 15 soil samples were studied by the methods of soil asrobic incuba-tion, and the correlation between the potentials and the amounts of nitrogen taken up by rye grass (Lolium.multifiorum Lam.) in pot culture was calculated. The soils were collected from Hubei Province in Cen-tral China. Soil nitrogen mineralization potentials (N_O) were calculated and optimized by a quick-BASICprogram. N_O ranged from 60 mg kg ̄(-1) to 340 mg kg ̄(-1), which accounted for 9.1% to 34.6% of the totalnitrogen content. Among the examined soils, yellow-brown soil collected from Wuhan had the largest N_Oand brown-red soil from Xianning had the smallest one. The mineralization rate constants (k) ranged from0.00556 d ̄(-1) to 0.01280 d ̄(-1) , in average 0.00882 d ̄(-1) . Chao soil from Wuhan had the greatest k while yellow-cinnamon soil from Zhaoyang had the smallest one. There were apparent differences between mineralizationparameters (N_O and k) optimized and non-optimized ones. Optimized N_O had a better correlation thannon-optimized N_O with the amount of nitrogen accumulated in the aerial parts of rye grass. N_O , N_O × k andN_t(accumulated mineralized nitrogen within time t) could be used as indexes of soil nitrogen supply. Amongthem N_t was the best, which was significantly correlated with the amounts of nitrogen accumulated in theaerial parts of rye grass harvested at three different times. 展开更多
关键词 aerobic incubation nitrogen mineralization potential parameter optimization upland soil
下载PDF
Composition of Sulphur Pool in Selected Upland Soils inNorth China 被引量:1
9
作者 ZHOU WEI LIN BAO +1 位作者 WANG HONG LI SHUTIAN and HE PING(Institute of Soil and Fertilizer, Chinese Academy of Agriculturol Sciences, Beijing 100081(China)) 《Pedosphere》 SCIE CAS CSCD 1999年第2期123-130,共8页
Soil sulfur fractions, including monocalcium phosphate-extractable S, slowly soluble inorganic S, C- O-S ,C-bonded S and unidentified organic S, were analyzed for 48 soils, as representatives of 6 major groups ofupl... Soil sulfur fractions, including monocalcium phosphate-extractable S, slowly soluble inorganic S, C- O-S ,C-bonded S and unidentified organic S, were analyzed for 48 soils, as representatives of 6 major groups ofupland soils, fiuvisol, cinnamon soil, loessial soil, chestnut soil, black soil and brown soil, in North China.The contemns of total S and monocalcium phosphate-extractable S in the above 48 soils ranged from 234 to860 and 5.1 to 220.3 mg kg--1 , respectively, and each of 6 soil groups contained the samples with a low level ofphosph ate-extractable S. Great differences in the average contents of each fraction of S were observed amongthe above 6 soil groups. Expressed as average percentage of the total S in soils, fiuvisols, cinnamon soils,loessial soils, chestnut soils, black soils and brown soils contained 6.1%, 9.5%, 5.7%, 13.2%, 3.5% and 6.8%monocalcium phosphate-extractable S, 5. 7%, 3. 0%, 9. 3%, 1 0. 4%, 3. 2% and 3. 1 % slowly soluble inorganic S ,51.6%, 26.7%, 17.4%, 31.2%, 28.9% and 22.7% C-O-S, 11.0%, 9.1%, 6.6%, 6.8%, 9.7% and 9.4% in C-bondedS, and 25.6%, 51.7%, 60.8%, 38.4%, 54.7% and 53.0% unidentified organic S, respectively. For the above 6groups of soils, the mean C/N ratios were remarkably similar, ranging from 9.7 to 10.7, while the mean N/Sratios ranged from 1.16 to 3.12. The highest ratios of C/N, C/C-O-S and C/C-bonded S were found in blacksoils, averaging 30.4, 104.9 and 314.7, respectively, while the lowest ratios arose in chestnut soil, averaging12.4, 39.7 and 183.3, respectively. 展开更多
关键词 C-bonded S C-O-S sulphate upland soil
下载PDF
Deforestation effects on biological and other important soil properties in an upland watershed of Bangladesh
10
作者 S.M. Sirajul Haque Sanatan Das Gupta Sohag Miah 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第4期877-885,共9页
Deforestation occurs at an alarming rate in upland watersheds of Bangladesh and has many detrimental effects on the environment. This study reports the effects of deforestation on soil biological proper- ties along wi... Deforestation occurs at an alarming rate in upland watersheds of Bangladesh and has many detrimental effects on the environment. This study reports the effects of deforestation on soil biological proper- ties along with some important physicochemical parameters of a southern upland watershed in.Bangladesh. Soils were sampled at 4 paired sites, each pair representing a deforested site and a forested site, and having similar topographical characteristics. Significantly fewer (p〈0.001) fungi and bacteria, and lower microbial respiration, active microbial biomass, metabolic and microbial quotients were found in soils of the deforested sites. Soil physical properties such as moisture content, water holding capacity, and chemical properties such as organic matter, total N, avail- able P and EC were also lower in deforested soils. Bulk density and pH were significantly higher in deforested soils. Available Ca and Mg were inconsistent between the two land uses at all the paired sites. Re- duced abundance and'biomass of soil mesofauna were recorded in defor- ested soils. However, soil anecic species were more abundant in defor- ested soils than epigeic and endogeic species, which were more abundant in forested soils than on deforested sites. 展开更多
关键词 deforestation effeets biological properties soil animals upland watershed Bangladesh
下载PDF
Soil Phosphorus Release to the Water Bodies in the Upland Fields of Yellow Soil Areas and Impacting Factor
11
作者 LIU Fang LUO Hai-bo +3 位作者 SU Yin-ge LIU Yuan-sheng HE Teng-bin LONG Jian 《Agricultural Sciences in China》 CAS CSCD 2005年第12期916-923,共8页
Soil phosphorus release to the water bodies in the upland fields of yellow soil areas and impacting factor was studied in Guizhou province. The results showed that the content of dissolved active P of surface runoff f... Soil phosphorus release to the water bodies in the upland fields of yellow soil areas and impacting factor was studied in Guizhou province. The results showed that the content of dissolved active P of surface runoff from various upland fields of yellow-soil were significantly different, which the concentrations of dissolved active P of runoff correlated with the contents of available-P, amorphous oxides of A1, and organic matter in the soils. The amount of soil phosphorus release to the water bodies affected by the level of applying P fertilizer and the process of corn growth, which with fertilizing from 150 to 900 kg P205 ha^-1 in the soil with high P level, the average contents of dissolved active P in the permeability-water of the soil increased from 0.020 mg L^-1 to 0.137 mg L^-1. The amount of soil phosphorus release to the water bodies also affected by environmental factor, which the amount of soil phosphorus release significantly increased under the conditions that temperature is 30℃-35℃, water/soil ratios is 15:1-25:1, submergence-time by water is 12-18 h and pH value of acid rains is 3.82-3.73. 展开更多
关键词 upland fields of yellow soil soil F release Dissolved active P of runoff Impacting factor
下载PDF
Indices of Sulfur-Supplying Capacities of Upland Soils in North China
12
作者 LIN BAO ZHOU WEI LI SHUTIAN and WANG HONG (Institute of Soil and Fertilized, Chinese Academy of Agricultural Sciences, SO Baishiqiao Road, Beijing 100081, China) 《Pedosphere》 SCIE CAS CSCD 1999年第1期25-34,共10页
Fifteen upland soils collected from the major arable areas in North China were used to assess the availability of soil sulfur (S) to plants in a pot experiment. Soils were extracted with various reagents and the extra... Fifteen upland soils collected from the major arable areas in North China were used to assess the availability of soil sulfur (S) to plants in a pot experiment. Soils were extracted with various reagents and the extractable S was determined using turbidimetric method or inductively coupled plasma atomic emission spectrometry (ICP-AES), respectively. In addition, mineralizable organic S, organic S, N/S ratio, sulfur availability index (SAI) and available sulfur correction value (ASC) in soils were also determined. The S amount extracted by 1.5 g L-1 CaCl2 was nearly equivalent to that by 0.25 mol L-1 KCl (40 ℃), and both of them were slightly smaller than that by 0.01 mol L-1 Ca(H2PO4)2 solution, as measured by turbidimetric method or ICP-AES. The extractable S measured by turbidimetric method was consistently smaller than that by ICP-AES. All methods tested except that for organic S and N/S ratio produced satisfactory results in the regression analyses of the relationships between the amounts of S extracted and plant dry matter weight and S uptake in the pot experiment. In general, 0.01 mol L-1 Ca (H2PO4) 2-extracted S determined by ICP-AES or turbidimetric method and 0.25 mol L-1 KCl(40℃)-extracted S determined by ICP-AES appeared to be the best indicators for evaluation of soil available S. 展开更多
关键词 soil available sulfur testing methods upland soils
下载PDF
Some Fertility Characteristics and Fertilizer Requirements of a Newly Reclaimed Upland Red Soil Derived from Quaternary Red Clay
13
作者 MA MAOTONG and XIE JIANCHANG (Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 China) 《Pedosphere》 SCIE CAS CSCD 2000年第4期373-382,共10页
A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order... A series of field experiments from 1990 to 1994 in Yingtan, Jiangxi Province, were conducted on an upland red soil derived from Quaternary red clay which had been reclaimed three years before the experiments, in order to study the fertility characteristics and fertilizer requirements of the newly reclaimed soil. The field experiments included that on nutrient characteristics and fertilizer effect, that on K-supplying potential and K-Mg relationship, that on fertilization rates of K and N, etc. The newly reclaimed upland soil was low in both N and P, and its responses to nitrogen and phosphate application were very significant. The K-supplying potential was also low, so the soil was highly responsive to K fertilizer. The effect of Ca and Mg fertilizers was not so great for the reason that certain amounts of Ca and Mg were incorporated into the soil through application of calcium magnesium phosphate during land leveling before the experiments. Among the four micronutrients, B, Mo, Zn and Cu, B had the greatest effect on the soil. The fertilizer requirements of the soil were in an order of P and N > K > lime and B > Mg > Mo, Zn and Cu. Eight crops tested had different fertilizer-requiring characteristics. Rapeseed was very sensitive to P and B fertilizers. Barely was especially sensitive to P and lime and it also responded to B, Mo, Zn and Cu. And sweet potato was especially sensitive to K. 展开更多
关键词 fertility characteristics fertilizer requirement newly reclaimed upland soil
下载PDF
Effects of Long-term K Fertilizer Application on the Crop Yield and K Distribution of Soil Aggregates in a Paddy-Upland Rotation System
14
作者 Song Meifang Hu Yitao +4 位作者 Huang Shuai He Junfeng Chen Fowen Zou Jialong Li Jifu 《Meteorological and Environmental Research》 CAS 2019年第1期64-69,共6页
[Objective]A long-term paddy-upland experiment was conducted to evaluate the effects of the recommended amount of potassium( K)fertilizer on crop yield,distribution of soil aggregate,and soil available K content. It w... [Objective]A long-term paddy-upland experiment was conducted to evaluate the effects of the recommended amount of potassium( K)fertilizer on crop yield,distribution of soil aggregate,and soil available K content. It was mainly to ascertain the distribution of K in the soil aggregate components in the paddy-upland rotation system,and then to provide theoretical basis for soil structure improvement,K pool management,and reasonable application of K fertilizer. [Method]There were 2 treatments selected,namely,NP(-K) treatment and NPK( + K) treatment in this study. Then the effects of K fertilizer application on the yield,available K content,and aggregate distribution in the middle rice-winter rape rotation system were analyzed. [Result]The results showed that the output of the crop rotation was affected by the year and fertilization. Compared with NP(-K),the average yield increases of rice and winter rape after application of K fertilizer were 0.51 and 0.33 t/hm2,with the increments of 7.5%and 14. 1% respectively. The long-term application of K fertilizer( 7 a) had no significant effects on the distribution of soil aggregates but could significantly increase the water-soluble K content and available K content at depths of 20-30 and 30-40 cm,and available K content of aggregates in each particle size. In addition,the balance of available K at the 10-20 and 30-40 cm of soil layers was the most significant through calculation of surplus-deficit value of available K in agglomerates of different soil layers. [Conclusion]Compared with the initial available K content in the farmland in 2011,the current K fertilizer application could lead to that farmland K content continues to decline. Therefore,we should pay attention to straw returned and supplement of organic K fertilizer,to maintain crop rotation system's productivity and soil K balance. 展开更多
关键词 Paddy-upland rotation POTASSIUM (K) FERTILIZER Yield soil AGGREGATE Available K content
下载PDF
Fixed Ammonium Content and Maximum Capacity of Ammonium Fixation in Major Types of Tillage Soils in Hunan Province,China 被引量:5
15
作者 ZHANG Yang-zhu HUANG Shun-hong +3 位作者 WAN Da-juan HUANG Yun-xiang ZHOU Wei-jun ZOU Ying-bin 《Agricultural Sciences in China》 CAS CSCD 2007年第4期466-474,共9页
In order to understand the status of fixed ammonium, fixed ammonium content, maximum capacity of ammonium fixation, and their influencing factors in major types of tillage soils of Hunan Province, China, were studied ... In order to understand the status of fixed ammonium, fixed ammonium content, maximum capacity of ammonium fixation, and their influencing factors in major types of tillage soils of Hunan Province, China, were studied with sampling on fields, and laboratory incubation and determination. The main results are summarized as follows: (1) Content of fixed ammonium in the tested soils varies greatly with soil use pattern and the nature of parent material. For the paddy soils, it ranges from 135.4 ± 57.4 to 412.8±32,4 mg kg^-1, with 304.7±96.7 mg kg^-1 in average; while it ranges from 59.4 to 435.7 mg kg^-1, with 230.1 ± 89.2 mg kg^-1 in average for the upland soils. The soils developed from limnic material and slate had higher fixed ammonium content than the soils developed from granite. The percentage of fixed ammonium to total N in the upland soils is always higher than that in the paddy soils. It ranges from 6.1 ±3.6% to 16.6±4.6%, with 14.0% ±5.1% in average for the paddy soils and it amounted to 5.8±2.0% to 40.1 ± 17.8%, with 23.5 ± 14.2% in average for upland soils. (2) The maximum capacity of ammonium fixation has the same trend with the fixed ammonium content in the tested soils. For all the tested soils, the percentage of recently fixed ammonium to maximum capacity of ammonium fixation is always bellow 20% and it may be due to the fact that the soils have high fertility and high saturation of ammonium-fixing site. (3) The clay content and clay composition in the tested soils are the two important factors influencing their fixed ammonium content and maximum capacity of ammonium fixation. The results showed that hydrous mica is the main 2:1 type clay mineral in 〈 0.02 mm clay of the paddy soils, and its content in 0.02-0.002 mm clay is much higher than that in 〈 0.002 mm clay of the soils. The statistical analysis showed that both the fixed ammonium content and the maximum capacity of ammonium fixation of the paddy soils were positively correlated with the total 2:1 type clay mineral content and hydrous mica content in 〈 0.02 mm clay and 0,02-0.002 mm clay at the significant level of P0.01 or P0.05, respectively, but not correlated with the total 2:1 type clay mineral content and hydrous mica content in 〈0.002 mm clay significantly, It demonstrated that the ammonium-fixing matrix of the tested soils mainly exists in the 0.02-0.002 mm clay. The above-mentioned results showed that fixed ammonium is a major form of N in the tillage soils in Hunan Province, China. It would play an important role in N nutrition of crops, especially for upland crops, and deserve to be further researched. 展开更多
关键词 Hunan Province tillage soils paddy soil upland soil fixed ammonium maximum capacity of ammonium fixation
下载PDF
The effects of water and nitrogen on the roots and yield of upland and paddy rice 被引量:12
16
作者 ZHANG Ya-jie XU Jing-nan +3 位作者 CHENG Ya-dan WANG Chen LIU Gao-sheng YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1363-1374,共12页
It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of... It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield. 展开更多
关键词 upland RICE PADDY RICE ROOT traits ROOT architecture soil WATER potential NITROGEN
下载PDF
Effects of different levels of compost application on amounts and distribution of organic nitrogen forms in soil particle size fractions subjected mainly to double cropping 被引量:7
17
作者 Thu Ha Nguyen Haruo Shindo 《Agricultural Sciences》 2011年第3期213-219,共7页
Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plo... Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N. 展开更多
关键词 COMPOST APPLICATION upland and PADDY Fields soil Organic N FORMS Size FRACTIONS
下载PDF
N_2O emissions from a cultivated Andisol after application of nitrogen fertilizers with or without nitrification inhibitor under soil moisture regime
18
作者 FANXiao-hui HaruoTsuruta 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期735-737,共3页
The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water ... The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS). 展开更多
关键词 N 2O emission nitrification inhibitor soil water content upland soil samples
下载PDF
土壤水分含量对旱稻根系和土壤呼吸速率的影响 被引量:1
19
作者 赵晨云 王家琪 +5 位作者 赵志平 高桐梅 彭廷 张静 赵亚帆 赵全志 《中国稻米》 北大核心 2024年第3期26-31,共6页
在池栽条件下比较研究了不同土壤水分含量处理(65%WHC、75%WHC、85%WHC、95%WHC和100%WHC,WHC代表田间最大持水量)对旱稻277土壤呼吸速率及根条数的影响。结果表明,土壤水分含量对旱稻土壤呼吸速率和根条数有显著影响。随着土壤水分含... 在池栽条件下比较研究了不同土壤水分含量处理(65%WHC、75%WHC、85%WHC、95%WHC和100%WHC,WHC代表田间最大持水量)对旱稻277土壤呼吸速率及根条数的影响。结果表明,土壤水分含量对旱稻土壤呼吸速率和根条数有显著影响。随着土壤水分含量的提高,土壤呼吸速率显著下降;随着旱稻生育期的推进,除100%WHC处理的土壤呼吸速率减小外,其余水分含量处理的土壤呼吸速率都呈升高趋势;随着土壤水分含量的增加,旱稻根条数逐渐降低,在分蘖前期处理间差异达到显著水平,随着生育期的推进,处理间的差异逐渐减小,且根条数与土壤呼吸速率呈显著正相关关系。土壤呼吸速率日变化在65%WHC、75%WHC和85%WHC处理下表现为逐渐增加后保持稳定,在95%WHC处理下表现为达最大值后逐渐下降,在100%WHC处理下表现为达最大值后略有下降,并一直保持在较低水平。土壤温度日变化在不同土壤水分含量下均呈现先升高再趋于平稳的变化趋势,以75%WHC水分处理下的温度最高,95%WHC和100%WHC水分处理下土壤温度较低。相关分析表明,不同水分含量处理条件下(100%WHC处理除外),土壤呼吸速率与土壤温度呈显著或极显著的二次抛物线关系,根条数与土壤呼吸速率呈显著的正相关关系。 展开更多
关键词 旱稻 土壤水分含量 根条数 土壤温度 土壤呼吸速率
下载PDF
Soil and Land Suitability Assessment for Rice Cultivation at Tono Irrigation Area in the Upper East Region, Ghana
20
作者 Prince M. Gyekye Charles Y. F. Domozoro +2 位作者 Mohammed Musah Felix O. Ababio Adams Sadick 《Open Journal of Applied Sciences》 2021年第11期1230-1239,共10页
Agriculture is one of the livelihood supports for the people of Upper East Region of Ghana. Soil evaluation research was conducted at Tono Irrigation Scheme to assess soil and land suitability for rice cultivation in ... Agriculture is one of the livelihood supports for the people of Upper East Region of Ghana. Soil evaluation research was conducted at Tono Irrigation Scheme to assess soil and land suitability for rice cultivation in the irrigable area of Tono Irrigation Scheme. </span><span style="font-family:"">A total of eleven (11) soil samples were collected and analysed for their chemical and physical properties. Based on field observation and criteria for soil suitability assessment</span><span style="font-family:"">,</span><span style="font-family:""> </span><span style="font-family:"">the different soil types that were identified were classified at the series level based on their position, parent material and the observed physical characteristics.</span><span style="font-family:""> The results indicated that </span><span style="font-family:"">the</span><span style="font-family:""> pH of the soils was within the acceptable range for crop production;however, the overall fertility level of the soils was very low. Physically, the upland soils were well to moderately well-drained, consisting of coarse-grained sandy loams topsoil overlying similar sandy loams and sandy clay loams at depth. They included Leptosols and Lixisols. The soils of the Scheme under lowlands and valley bottom sites, however, included Eutric Gleysol, Calsic Vertisol, Eutric Fluvisol and Eutric Plinthosol, which were heavily textured and relatively poor drained, or medium-textured and moderately to imperfectly well-drained. They showed a low to a very low rate of water percolation losses, which is good for the current farming system of cropping rice within the lowlands and valley bottom sites of the Scheme. 展开更多
关键词 soil Classification LOWLAND upland IRRIGATION Valley Bottom
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部