In this paper, the environmental factors are surveyed of the mariculture waters of the Honghai Bay from the late spring to the early summer (June) in 1998. The distributional features and variation laws of dissolved o...In this paper, the environmental factors are surveyed of the mariculture waters of the Honghai Bay from the late spring to the early summer (June) in 1998. The distributional features and variation laws of dissolved oxygen, salinity, pH value and nutrient salts in the sea water are expounded. Also discussed are their relationships between each other. The results show that the contents of dissolved oxygen and pH value in the sea water increase with the increasing temperature from north (except for No.15~17 stations) to south (expect for No.6 station). At the same time it is affirmed that photosynthesis is the major cause of the high contents of dissolved oxygen and pH value. And the nutrient salt shows a negative correlation with salinity. The total content of phytoplankton obviously increased with the reduction of nutrient salts from north to south.展开更多
The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determin...The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.展开更多
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu...For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.展开更多
An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Cir...An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.展开更多
Salinity variability and its causes in the tropical Pacific are analyzed using observations, reanalysis products and model simulations. The mixed-layer salinity(MLS) budget analyses from observations and reanalysis pr...Salinity variability and its causes in the tropical Pacific are analyzed using observations, reanalysis products and model simulations. The mixed-layer salinity(MLS) budget analyses from observations and reanalysis products indicate that its interannual evolution is closely related to ENSO and is predominantly governed by surface forcing and surface advection in the western-central equatorial Pacific. It is found that the observed MLS tendency leads Nin?o3.4 by about 12 months due to the effect of negative freshwater flux(evaporation minus precipitation). These observation-based analyses are used to evaluate the corresponding simulation using GFDL-ESM2 M. It is evident that the model can simulate the spatiotemporal variations of MLS with some discrepancies compared to observations. In the warm pool of the equatorial Pacific the MLS tendency in the model is sensitive to ocean dynamics, however model biases cause the tendency to be underestimated. In particular, the freshwater flux is overestimated while the ocean surface zonal current and vertical velocity at the base of the mixed layer are underestimated. Due to model biases in representing the related physics, the effects of surface forcing on the simulated MLS budget are overestimated and those of subsurface and surface advection are relatively weak. Due to weaker surface advection and subsurface forcing than observed, the simulated compensations for surface forcing are suppressed, and the simulated MLS tendency that leads Nin?o3.4 by 8–10 months, which is shorter than the observed lead time. These results are useful for the interpretation of observational analyses and other model simulations in the tropical Pacific.展开更多
A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected...A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.展开更多
To understand the tolerance to salinity and osmoregulation of the introduced Trachemys scripta elegans, the salinity stress of four groups (salinity 5‰, 15‰, 25‰ and control group) were conducted. Inorganic ions,...To understand the tolerance to salinity and osmoregulation of the introduced Trachemys scripta elegans, the salinity stress of four groups (salinity 5‰, 15‰, 25‰ and control group) were conducted. Inorganic ions, osmotic pressure, glucose and aldosterone of blood and urine in T. s. elegans (BW: 125.60 ±19.84 g) were analyzed at 30 d, 60 d and 90 d stress. The results showed that: 1) inorganic ions concentration of blood and urine increased with ambient salinity, which indicated that high influx of ions was combined with higher outflow when exposed to saline water in T. s. elegans. However, blood aldosterone decreased with increasing salinity, which indicated that an increased sodium intake resulting in a diminished aldosterone production. However, with elapsed time, inorganic ions in urine decreased, which indicated that inorganic ions in blood would be accumulated, and Na^+ and Cl^- in the plasma inevitably build up to harmful levels, at last death was happening when T. s. elegans was exposed to salinity 25 during 90 d salinity stress; 2) blood osmotic pressure increased as ambient salinity increased, it would reach 400 mOsm/kg in the group of salinity 25, which was about 1.5 fold of the control group. Higher blood osmotic pressure was due to both higher blood ions and urea concentrations. There may be another mechanism to avoid an excess of NaCl together with an important loss of water using one of the end-products of nitrogen metabolism; 3) blood glucose in each group except the group of salinity 5 decreased with time elapsed and with salinity increased. Therefore, we can conclude that T. s. elegans is an osmoregulator that limits the entry of Na^+ and Cl^-, but can also tolerate certain degrees of increases in plasma Na^+ and Cl^-. When ambient salinity was lower than 15‰, T. s. elegans can increase blood osmotic pressure by balancing the entry of NaCl with the secretion of aldosterone decreased, and by accumulating blood urea for osmoregulation effectors, and survive for at least three months. These results could provide theoretical basis for salinity tolerance and the invasion on physiological mechanism for T. s. elegans.展开更多
In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecast...In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model(WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model,which is the land component of the WRF-CLM model. The Great Salt Lake(GSL) in the USA was selected as the study area. The simulation was performed from September 3,2001 to September 30,2002. Our results show that the modif ied WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects,particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However,the salinity effect on thermal conductivity was found insignificant in our simulations.展开更多
Salinity is a significant environmental factor that can affect the survival,metamorphosis,growth and feeding of Portunus trituberculatus.In order to analyze the key physiological characteristics of P.trituberculatus i...Salinity is a significant environmental factor that can affect the survival,metamorphosis,growth and feeding of Portunus trituberculatus.In order to analyze the key physiological characteristics of P.trituberculatus in response to short-term low salinity stress,the experiments of gradually decline and recovery as well as abrupt decline in salinity were carried out.The results showed that P.trituberculatus could survive in a certain low salinity range in the short term,and salinity 12 was the lowest tolerable salinity under the present experimental conditions.The change of the hemolymph osmotic pressure displayed significant positive correlations with water salinity,and the pressure was always higher than seawater osmotic pressure.Short-term low salinity stress changed the structure and morphology of gill tissue.The expansion of gill filament ends and epithelial cell shedding were conducive to osmotic adjustment.The activities of key ion transport enzymes such as Na^(+)-K^(+)-ATPase,carbonic anhydrase and V-ATPase also changed with the osmotic regulation,while Na^(+)-K^(+)-ATPase played a dominant role.In summary,as an osmotic adjustment species,P.trituberculatus rapidly adapt to the short-term low-salinity environment by osmotic adjustment in vivo,but salinity below salinity 12 is not conducive to its survival.Our result enriched the theoretical mechanism of osmotic regulation of P.trituberculatus,providing reference for the development of aquaculture technology of P.trituberculatus.展开更多
A 51.85 m firn core drilled in Princess Elizabeth Land, Antarctica, during the 1996-1997 Chinese First Antarctic Inland Expedition, has been measured for δ 18 O and major ions. Based on the high quality data ...A 51.85 m firn core drilled in Princess Elizabeth Land, Antarctica, during the 1996-1997 Chinese First Antarctic Inland Expedition, has been measured for δ 18 O and major ions. Based on the high quality data of the seasonal variations of major ions, the firn core was dated with errors within ±3 years. The 51.85 m firn core record extends for 251 years (A. D. 1745-1996). The results of the glaciochemistry data of the firn core show that the mean concentrations of Cl -, Na + and Mg 2+ are similar to those reported from other coastal areas in East Antarctica. However, mean concentrations of Ca 2+ are much higher than those reported from other regions, this anomaly phenomenon may be related to the strong local terrestrial sources. It is found that the variations of three kinds of sea salt ions (Cl -, Na + and Mg 2+ ) in the past 150 years show very similarly rising trends, which may be the results the Southern Hemisphere warming in the past century.展开更多
Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Am...Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Amaranthus cruentus) cultivars: Rouge (salt-resistant) and Locale (salt-sensitive). Young plants of these cultivars were exposed, in hydroponic system, to three concentrations of NaCl: 0, 30 and 90 mM. Growth parameters, ions, free proline and soluble sugars concentrations were determined after 2 weeks of stress. NaCl effect resulted in plant growth reduction in both cultivars but plants of cultivar Rouge were less affected compared to that of cv. Locale. Na+, proline and soluble sugars concentrations increased significantly in leaves and roots under salinity while K+, Ca2+ and Mg2+ concentrations decreased in both cultivars. Proline and soluble sugars increased significantly in leaves and roots of cultivar Locale whereas in cultivar Rouge, proline increase was significant only in roots and soluble sugars increase was significant only in leaves. The highest increase of Na+ concentration occurred in leaves of cv. Rouge coupled with the lowest reduction in K+ concentration. The highest increase of proline occurred in leaves of cultivar Locale whereas the highest increase of soluble sugars was observed in leaves of cultivar Rouge. The reduction of the Ca2+ concentration under salt stress was more accentuated in both leaves and roots of cultivar Rouge than cultivar Locale while cv. Rouge maintained higher content in Mg2+ either in leaves or in roots in the presence of NaCl than cultivar Locale. These results suggest an implication of Na+, K+ and Mg2+ in salt resistance in these cultivars and that soluble sugars may play an important role in salt-resistance in Amaranthus cruentus. However, proline appears as a symptom of injury in stressed plants rather than an indicator of resistance.展开更多
Salt tolerance and freeze preservation of crucian are always important concerns of people. There are rare reports on effect of different salinity on fresh- ness and quality. However, water salinity will directly affec...Salt tolerance and freeze preservation of crucian are always important concerns of people. There are rare reports on effect of different salinity on fresh- ness and quality. However, water salinity will directly affect osmotic pressure in fish, thereby affecting meat quality. In this study, the tolerance of crucian to different salinities (1‰, 2‰, 5‰, 8‰, 10‰ and 15‰) was investigated. In addition, the ef- fect of different salinity on freezing freshness and quality of crucian was studied. The results showed that the tolerance threshold of crucian to salinity was about 8‰, and the freezing quality of crucian in water with salinity of ‰ was significantly better than that in fresh water.展开更多
A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchmen...A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.展开更多
The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone tem...The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone temperatures (28/20℃, 12/8℃, day/night temperature) in combination with two NaC1 levels (0 and 100 mmol L-l). After 2 wk of treatment, K+ and Na~ concentration, leaf photosynthetic gas exchange, chlorophyll fluorescence and leaf antioxidant enzyme activities were measured. Salinity significantly decreased plant biomass, net photosynthesis rate, actual quantum yield of photosynthesis and concentration of K+, but remarkably increased the concentration of Na+. These effects were more pronounced when the salinity treatments were combined with the treatment of low RZT conditions. Either salinity or low RZT individually did not affect maximal efficiency of PSII photochemistry (Fv/Fm), while a combination of these two stresses decreased Fv/Fm considerably, indicating that the photo-damage occurred under such conditions. Non-photochemical quenching was increased by salt stress in accompany with the enhancement of the de-epoxidation state of the xanthophyll cycle, in contrast, this was not the case with low RZT applied individually. Salinity stress individually increased the activities of SOD, APX, GPOD and GR, and decreased the activities of DHAR. Due to the interactive effects of salinity with low RZT, these five enzyme activities increased sharply in the combined stressed plants. These results indicate that low RZT exacerbates the ion imbalance, PSII damage and photosynthesis inhibition in tomato plants under salinity. In response to the oxidative stress under salinity in combination with low RZT, the activities of antioxidant enzymes SOD, APX, GPOD, DHAR and GR were clearly enhanced in tomato plants.展开更多
A plot culture experiment was conducted in a greenhouse at University of Zabol,Iran,to study the effects of different salinity levels and potassium supply on pearl millet.The experiment was laid out in a completely ra...A plot culture experiment was conducted in a greenhouse at University of Zabol,Iran,to study the effects of different salinity levels and potassium supply on pearl millet.The experiment was laid out in a completely randomized factorial design with three replicates.Potassium sulfate was used as the potassium source.The rates of potassium treatments were 0,100,and 200 kg ha-1.Pearl millet was subjected to different salinity levels(0,4,8,and 12 ds m-1) through addition of NaCl to irrigation water.Results showed that the increase in the salt concentration from control to 12 ds m-1 decreased grain yield(38.7%) of millet plants.In this study,we found a negative relationship between potassium and proline accumulation at vegetative(r2=-0.75**) and reproductive stage(r2=-0.66**) in millet plants.Salt stress remarkably elevated the activities of CAT and GPX antioxidant enzymes at vegetative and reproductive stages.Furthermore,potassium application had significant effect on grain yield and increased it about 10.6% at the highest salinity treatment(12 ds m-1).Though,potassium treatment increased antioxidant activity in millet plants,it had no significant effect on proline content in leaves.Salinity treatment decreased potassium uptake but application potassium increased potassium content in leaves at two stages.展开更多
In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isoto...In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.展开更多
The halophyte Salicornia europaea L. is a widely distributed salt-tolerant plant species that produces numerous dimorphic seeds. We studied germination and recovery in dimorphic seeds of Central Asian S. europaea unde...The halophyte Salicornia europaea L. is a widely distributed salt-tolerant plant species that produces numerous dimorphic seeds. We studied germination and recovery in dimorphic seeds of Central Asian S. europaea under various salinity conditions. We also tested the effects of various salts on Na+ and K+ accumulation during plant development from germination to anthesis under greenhouse conditions. We found good germination (close to control) of large seeds under NaCl between 0.5 and 2%, Na2SO4 and 2NaCl + KCl + CaCl between 0.5 and 3%, and 2Na2SO4 + K2SO4 -- MgSO4 between 0.5 and 5%. For the small seeds, we found stimulating effects of chloride salts (both pure and mixed) under 0.5-1% concentrations, and sulfate salts under 0.5-3%. Both types of seeds showed high germination recovery potential. Salt tolerance limits of the two seed types during germination and at the later stages of development were very similar (4-5%). During plant growth the optimal concentrations of mixed chloride and sulfate salts ranged from 0.5 to 2%. The mechanisms of salt tolerance in the two seed types of S. europaea appear to differ, but complement each other, improving overall adaptation of this species to high salinity.展开更多
We have done a comparative study of ion status, growth and biochemical parameters in shoots and roots of seablite (Suaeda altissima (L.) Pall.) and spinach (Spinacia oleracea L.) grown with different salinity levels i...We have done a comparative study of ion status, growth and biochemical parameters in shoots and roots of seablite (Suaeda altissima (L.) Pall.) and spinach (Spinacia oleracea L.) grown with different salinity levels in the medium (0.5 - 750 mМ). A distinctive feature of the halophyte was a high Na+ content in tissues at its low concentration in the medium (0.5 mM). In these conditions, Na+ accumulation in seablite roots was four-fold higher than in spinach roots, and Na+ content in seablite leaves was almost 20-fold higher than in spinach. Together with an increase in sodium concentration in the medium, K+ content decreased six-fold in seablite leaves, while in spinach it did not decrease so drastically. We can suppose that in the halophyte, some processes occur only in the presence of sodium, and these functions of sodium cannot be fully fulfilled by potassium. Analysis of protein and total nitrogen content in tissues shows that at high salinity, the ability to synthesize non-protein nitrogen-containing compounds increases in the halophyte and decreases in the glycophyte. Data on proline content dynamics show that its increase in tissues of spinach (salinity levels 150 and 250 mМ) and seablite (salinity levels 0.5 and 750 mМ) is an indicator of plant injury. In seablite and spinach, proline is not a major osmoregulator. Its concentration both in roots and leaves was no more than 2.5 μmol/g fresh weight. The data presented in this work concern the accumulation and distribution of Na+, Cl?, K+ and ions, as well as growth and biochemical parameters. Our data show that the development of adaptation reactions in the whole plants in the conditions of high salinity is determined by morphofunctional systems and their interaction.展开更多
The Pacific white shrimp, Litopenaeus vannamei, is widely farmed in China. Salinity is a major environmental factor that affects its growth and distribution. Crustacean hyperglycemic hormone is verified to participate...The Pacific white shrimp, Litopenaeus vannamei, is widely farmed in China. Salinity is a major environmental factor that affects its growth and distribution. Crustacean hyperglycemic hormone is verified to participate in ion transport in response to the salinity challenge mediated by endocrine neurotransmitters(biogenic amines, BAs). In the present study, the contents of BAs and expressions of their receptors were detected in gills of Litopenaeus vannamei exposed to low salinity. The intracellular signaling molecules such as cyclic adenosine monophosphate(cAMP), protein kinase A(PKA), 14-3-3 protein, FXYD2 protein and cAMP response element-binding protein(CREB) were detected. The effects of low salinity on the expressions of Na^+-K^+-ATPase, Na^+/K^+/2 Cl-co-transporter and Cl-transporter and activity of Na^+-K^+-ATPase were also analyzed. The results showed that dopamine and epinephrine concentrations and their receptor expressions were significantly affected by low salinity. The changes of c AMP and PKA were obvious and the expressions of 14-3-3 and FXYD2 peaked at early stages. However, the expression of CREB was only significantly up-regulated on day 9. The activity and expression of Na^+-K^+-ATPase(α subunit) reached a peak on day 1. The expressions of Na^+/K^+/2 Cl-co-transporter and Cl-transporter up-regulated obviously. It suggests that BAs can activate the cAMP-PKA pathway, which further acts on the 14-3-3 and FXYD2 proteins, and ultimately improve the activity of Na^+-K^+-ATPase. Furthermore, after BAs stimulate the cAMP-PKA pathway, PKA phosphorylates the transcription factor CREB and regulates the expressions of ion transport enzymes/transporters. The results in this study are helpful for understanding the response mechanism of endocrine neurotransmitters on osmoregulation in crustaceans.展开更多
Soil salinity is becoming an increasingly serious constraint to plant growth in many parts of the world; this is particularly common in semi-arid and arid zones. This study was conducted to evaluate the effect of diff...Soil salinity is becoming an increasingly serious constraint to plant growth in many parts of the world; this is particularly common in semi-arid and arid zones. This study was conducted to evaluate the effect of different concentrations of salt on seed germination and seedling growth of Acacia albida and A. salicina. Collected seeds were treated with H2SO4 98% for 35 min then left to germinate in a controlled growth chamber. Seeds were grown at salinity levels of 0.1, 0.2 and 0.3 mol.L1 of NaH2PO4.H20. Germination parameters and seedling growth indices were measured after 35 days. The mean of total length ofA. salicina in all salinity concentrations was more than that of :4. albida. The fresh weight of stem and root of :4, albida was more than that of :4. salicina. Growth of control seedlings was higher than for other treatments and the fresh weight of stems of two species at salt concentrations of 0.2 and 0,3 mol.Ll decreased with increasing concentration of salt. Most Control seeds germinated at salinity of 0.1 mol.Ll and germination index, final germination and seeds stamina was greater at low levels of salinity.展开更多
文摘In this paper, the environmental factors are surveyed of the mariculture waters of the Honghai Bay from the late spring to the early summer (June) in 1998. The distributional features and variation laws of dissolved oxygen, salinity, pH value and nutrient salts in the sea water are expounded. Also discussed are their relationships between each other. The results show that the contents of dissolved oxygen and pH value in the sea water increase with the increasing temperature from north (except for No.15~17 stations) to south (expect for No.6 station). At the same time it is affirmed that photosynthesis is the major cause of the high contents of dissolved oxygen and pH value. And the nutrient salt shows a negative correlation with salinity. The total content of phytoplankton obviously increased with the reduction of nutrient salts from north to south.
文摘The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42330708 and 41820104001)。
文摘For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.
基金partially supported by the National Basic Research Program of China[grant number 2013CB956204]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403],[grant number XDA11010304]the National Natural Science Foundation of China[grant number 41305028]
文摘An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41690122, 41690120 and 41475101)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)+1 种基金the NSFC Innovative Group Grant (Project No. 41421005)Taishan Scholarship
文摘Salinity variability and its causes in the tropical Pacific are analyzed using observations, reanalysis products and model simulations. The mixed-layer salinity(MLS) budget analyses from observations and reanalysis products indicate that its interannual evolution is closely related to ENSO and is predominantly governed by surface forcing and surface advection in the western-central equatorial Pacific. It is found that the observed MLS tendency leads Nin?o3.4 by about 12 months due to the effect of negative freshwater flux(evaporation minus precipitation). These observation-based analyses are used to evaluate the corresponding simulation using GFDL-ESM2 M. It is evident that the model can simulate the spatiotemporal variations of MLS with some discrepancies compared to observations. In the warm pool of the equatorial Pacific the MLS tendency in the model is sensitive to ocean dynamics, however model biases cause the tendency to be underestimated. In particular, the freshwater flux is overestimated while the ocean surface zonal current and vertical velocity at the base of the mixed layer are underestimated. Due to model biases in representing the related physics, the effects of surface forcing on the simulated MLS budget are overestimated and those of subsurface and surface advection are relatively weak. Due to weaker surface advection and subsurface forcing than observed, the simulated compensations for surface forcing are suppressed, and the simulated MLS tendency that leads Nin?o3.4 by 8–10 months, which is shorter than the observed lead time. These results are useful for the interpretation of observational analyses and other model simulations in the tropical Pacific.
文摘A pot experiment was carried out on a marine saline soil to study the effect of initial soluble Na/Ca ratio of saline soil on the salinity tolerance of barley plant.The results showed that (1) the Na/Ca ratio affected significantly the dry weight of the plant at an earlier stage of growth,the critical values of initial Na/Ca ratio at which the plant could grow normally on soils containing salts of 2.5,3.5 and 4.5g kg^-1 were 30,20 and 15,respectively;(2)smaller Na/Ca ratio resulted in a considerable decrease in Na accumulation but a great increase in K accumulation in the barley plant;and (3) the plasmallema of barley leaf were badly injured when the Na/Ca ratio was more than 30 and the increase of Na content of plant caused an exudation of K from the leaf cells.Some critical indexes were suggested for the cultivation of barley plant on marine saline soils and could be used as reference in the biological reclamation of marine saline soils.
基金the project of National Natural Science Foundation of China (Nos. 31360642 and 31372228)Key Project of Chinese Ministry of Education (No.211145)Natural Science Foundation of Hainan Province of China (No. 303148)" for financial support
文摘To understand the tolerance to salinity and osmoregulation of the introduced Trachemys scripta elegans, the salinity stress of four groups (salinity 5‰, 15‰, 25‰ and control group) were conducted. Inorganic ions, osmotic pressure, glucose and aldosterone of blood and urine in T. s. elegans (BW: 125.60 ±19.84 g) were analyzed at 30 d, 60 d and 90 d stress. The results showed that: 1) inorganic ions concentration of blood and urine increased with ambient salinity, which indicated that high influx of ions was combined with higher outflow when exposed to saline water in T. s. elegans. However, blood aldosterone decreased with increasing salinity, which indicated that an increased sodium intake resulting in a diminished aldosterone production. However, with elapsed time, inorganic ions in urine decreased, which indicated that inorganic ions in blood would be accumulated, and Na^+ and Cl^- in the plasma inevitably build up to harmful levels, at last death was happening when T. s. elegans was exposed to salinity 25 during 90 d salinity stress; 2) blood osmotic pressure increased as ambient salinity increased, it would reach 400 mOsm/kg in the group of salinity 25, which was about 1.5 fold of the control group. Higher blood osmotic pressure was due to both higher blood ions and urea concentrations. There may be another mechanism to avoid an excess of NaCl together with an important loss of water using one of the end-products of nitrogen metabolism; 3) blood glucose in each group except the group of salinity 5 decreased with time elapsed and with salinity increased. Therefore, we can conclude that T. s. elegans is an osmoregulator that limits the entry of Na^+ and Cl^-, but can also tolerate certain degrees of increases in plasma Na^+ and Cl^-. When ambient salinity was lower than 15‰, T. s. elegans can increase blood osmotic pressure by balancing the entry of NaCl with the secretion of aldosterone decreased, and by accumulating blood urea for osmoregulation effectors, and survive for at least three months. These results could provide theoretical basis for salinity tolerance and the invasion on physiological mechanism for T. s. elegans.
基金Supported by the National Natural Science Foundation of China(No.41130961)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(No.XDB03030300)+1 种基金the National Natural Science Foundation of China(Nos.41475011,41275014)Visiting Scholars Program of the Public School Study Abroad Project of Chinese Academy of Sciences(No.2008-No.136)
文摘In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model(WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model,which is the land component of the WRF-CLM model. The Great Salt Lake(GSL) in the USA was selected as the study area. The simulation was performed from September 3,2001 to September 30,2002. Our results show that the modif ied WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects,particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However,the salinity effect on thermal conductivity was found insignificant in our simulations.
基金supported by the National Key R&D Pro-gram of China(No.2020YFD0900203)the China Agricul-ture Research System of MOF and MARAthe K.C.Wong Magna Fund in Ningbo University。
文摘Salinity is a significant environmental factor that can affect the survival,metamorphosis,growth and feeding of Portunus trituberculatus.In order to analyze the key physiological characteristics of P.trituberculatus in response to short-term low salinity stress,the experiments of gradually decline and recovery as well as abrupt decline in salinity were carried out.The results showed that P.trituberculatus could survive in a certain low salinity range in the short term,and salinity 12 was the lowest tolerable salinity under the present experimental conditions.The change of the hemolymph osmotic pressure displayed significant positive correlations with water salinity,and the pressure was always higher than seawater osmotic pressure.Short-term low salinity stress changed the structure and morphology of gill tissue.The expansion of gill filament ends and epithelial cell shedding were conducive to osmotic adjustment.The activities of key ion transport enzymes such as Na^(+)-K^(+)-ATPase,carbonic anhydrase and V-ATPase also changed with the osmotic regulation,while Na^(+)-K^(+)-ATPase played a dominant role.In summary,as an osmotic adjustment species,P.trituberculatus rapidly adapt to the short-term low-salinity environment by osmotic adjustment in vivo,but salinity below salinity 12 is not conducive to its survival.Our result enriched the theoretical mechanism of osmotic regulation of P.trituberculatus,providing reference for the development of aquaculture technology of P.trituberculatus.
基金the Key International Cooperation Project of Ministry of Science and Technology of China,No.2001CB711003the National Natural Science Foundation of China,No.40305007the Science and Technology Innovation Project of Northwest Normal University,No.NWNU-KJCXGC-02-20.
文摘A 51.85 m firn core drilled in Princess Elizabeth Land, Antarctica, during the 1996-1997 Chinese First Antarctic Inland Expedition, has been measured for δ 18 O and major ions. Based on the high quality data of the seasonal variations of major ions, the firn core was dated with errors within ±3 years. The 51.85 m firn core record extends for 251 years (A. D. 1745-1996). The results of the glaciochemistry data of the firn core show that the mean concentrations of Cl -, Na + and Mg 2+ are similar to those reported from other coastal areas in East Antarctica. However, mean concentrations of Ca 2+ are much higher than those reported from other regions, this anomaly phenomenon may be related to the strong local terrestrial sources. It is found that the variations of three kinds of sea salt ions (Cl -, Na + and Mg 2+ ) in the past 150 years show very similarly rising trends, which may be the results the Southern Hemisphere warming in the past century.
文摘Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Amaranthus cruentus) cultivars: Rouge (salt-resistant) and Locale (salt-sensitive). Young plants of these cultivars were exposed, in hydroponic system, to three concentrations of NaCl: 0, 30 and 90 mM. Growth parameters, ions, free proline and soluble sugars concentrations were determined after 2 weeks of stress. NaCl effect resulted in plant growth reduction in both cultivars but plants of cultivar Rouge were less affected compared to that of cv. Locale. Na+, proline and soluble sugars concentrations increased significantly in leaves and roots under salinity while K+, Ca2+ and Mg2+ concentrations decreased in both cultivars. Proline and soluble sugars increased significantly in leaves and roots of cultivar Locale whereas in cultivar Rouge, proline increase was significant only in roots and soluble sugars increase was significant only in leaves. The highest increase of Na+ concentration occurred in leaves of cv. Rouge coupled with the lowest reduction in K+ concentration. The highest increase of proline occurred in leaves of cultivar Locale whereas the highest increase of soluble sugars was observed in leaves of cultivar Rouge. The reduction of the Ca2+ concentration under salt stress was more accentuated in both leaves and roots of cultivar Rouge than cultivar Locale while cv. Rouge maintained higher content in Mg2+ either in leaves or in roots in the presence of NaCl than cultivar Locale. These results suggest an implication of Na+, K+ and Mg2+ in salt resistance in these cultivars and that soluble sugars may play an important role in salt-resistance in Amaranthus cruentus. However, proline appears as a symptom of injury in stressed plants rather than an indicator of resistance.
基金Supported by Incentive Program Subsidized by Department of Science and Technology of Hebei Province(15926620H)Key Technology Research and Development Program of Science and Technology Bureau of Qinhuangdao City(201401A067201402B043)~~
文摘Salt tolerance and freeze preservation of crucian are always important concerns of people. There are rare reports on effect of different salinity on fresh- ness and quality. However, water salinity will directly affect osmotic pressure in fish, thereby affecting meat quality. In this study, the tolerance of crucian to different salinities (1‰, 2‰, 5‰, 8‰, 10‰ and 15‰) was investigated. In addition, the ef- fect of different salinity on freezing freshness and quality of crucian was studied. The results showed that the tolerance threshold of crucian to salinity was about 8‰, and the freezing quality of crucian in water with salinity of ‰ was significantly better than that in fresh water.
基金supported by the National Basic Research Program of China (2009CB421302)the National Natural Science Foundation of China (41071026,51069017)
文摘A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.
基金supported by the National Natural Science Foundation of China(31101585)the Cucurbit Vegetable Innovation Strategic Alliance Fund of Zhejiang Province,China(20101107)+1 种基金the Vegetable Innovation Group Fund of Zhejiang Province,China(2009R50026)the Zhejiang A&F University Science Development Fund,China(2009FR059)
文摘The combined effects of salinity with low root zone temperature (RZT) on plant growth and photosynthesis were studied in tomato (Solanum lycopersicum) plants. The plants were exposed to two different root zone temperatures (28/20℃, 12/8℃, day/night temperature) in combination with two NaC1 levels (0 and 100 mmol L-l). After 2 wk of treatment, K+ and Na~ concentration, leaf photosynthetic gas exchange, chlorophyll fluorescence and leaf antioxidant enzyme activities were measured. Salinity significantly decreased plant biomass, net photosynthesis rate, actual quantum yield of photosynthesis and concentration of K+, but remarkably increased the concentration of Na+. These effects were more pronounced when the salinity treatments were combined with the treatment of low RZT conditions. Either salinity or low RZT individually did not affect maximal efficiency of PSII photochemistry (Fv/Fm), while a combination of these two stresses decreased Fv/Fm considerably, indicating that the photo-damage occurred under such conditions. Non-photochemical quenching was increased by salt stress in accompany with the enhancement of the de-epoxidation state of the xanthophyll cycle, in contrast, this was not the case with low RZT applied individually. Salinity stress individually increased the activities of SOD, APX, GPOD and GR, and decreased the activities of DHAR. Due to the interactive effects of salinity with low RZT, these five enzyme activities increased sharply in the combined stressed plants. These results indicate that low RZT exacerbates the ion imbalance, PSII damage and photosynthesis inhibition in tomato plants under salinity. In response to the oxidative stress under salinity in combination with low RZT, the activities of antioxidant enzymes SOD, APX, GPOD, DHAR and GR were clearly enhanced in tomato plants.
文摘A plot culture experiment was conducted in a greenhouse at University of Zabol,Iran,to study the effects of different salinity levels and potassium supply on pearl millet.The experiment was laid out in a completely randomized factorial design with three replicates.Potassium sulfate was used as the potassium source.The rates of potassium treatments were 0,100,and 200 kg ha-1.Pearl millet was subjected to different salinity levels(0,4,8,and 12 ds m-1) through addition of NaCl to irrigation water.Results showed that the increase in the salt concentration from control to 12 ds m-1 decreased grain yield(38.7%) of millet plants.In this study,we found a negative relationship between potassium and proline accumulation at vegetative(r2=-0.75**) and reproductive stage(r2=-0.66**) in millet plants.Salt stress remarkably elevated the activities of CAT and GPX antioxidant enzymes at vegetative and reproductive stages.Furthermore,potassium application had significant effect on grain yield and increased it about 10.6% at the highest salinity treatment(12 ds m-1).Though,potassium treatment increased antioxidant activity in millet plants,it had no significant effect on proline content in leaves.Salinity treatment decreased potassium uptake but application potassium increased potassium content in leaves at two stages.
基金financially supported by the National Natural Science Foundation of China(Grant Nos. 41872093, 41502096) Foundation of Qinghai Science & Technology Department (2016-ZJ-715) One-Thousand InnovativeTalent Project of Qinghai Province (Grant to QS Fan)
文摘In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.
基金This study was supported by a grant from the United States Agency for International Development, Bureau for Economic Growth, Agriculture, and Trade, project number TA-MOU-03-CA23- 032.
文摘The halophyte Salicornia europaea L. is a widely distributed salt-tolerant plant species that produces numerous dimorphic seeds. We studied germination and recovery in dimorphic seeds of Central Asian S. europaea under various salinity conditions. We also tested the effects of various salts on Na+ and K+ accumulation during plant development from germination to anthesis under greenhouse conditions. We found good germination (close to control) of large seeds under NaCl between 0.5 and 2%, Na2SO4 and 2NaCl + KCl + CaCl between 0.5 and 3%, and 2Na2SO4 + K2SO4 -- MgSO4 between 0.5 and 5%. For the small seeds, we found stimulating effects of chloride salts (both pure and mixed) under 0.5-1% concentrations, and sulfate salts under 0.5-3%. Both types of seeds showed high germination recovery potential. Salt tolerance limits of the two seed types during germination and at the later stages of development were very similar (4-5%). During plant growth the optimal concentrations of mixed chloride and sulfate salts ranged from 0.5 to 2%. The mechanisms of salt tolerance in the two seed types of S. europaea appear to differ, but complement each other, improving overall adaptation of this species to high salinity.
文摘We have done a comparative study of ion status, growth and biochemical parameters in shoots and roots of seablite (Suaeda altissima (L.) Pall.) and spinach (Spinacia oleracea L.) grown with different salinity levels in the medium (0.5 - 750 mМ). A distinctive feature of the halophyte was a high Na+ content in tissues at its low concentration in the medium (0.5 mM). In these conditions, Na+ accumulation in seablite roots was four-fold higher than in spinach roots, and Na+ content in seablite leaves was almost 20-fold higher than in spinach. Together with an increase in sodium concentration in the medium, K+ content decreased six-fold in seablite leaves, while in spinach it did not decrease so drastically. We can suppose that in the halophyte, some processes occur only in the presence of sodium, and these functions of sodium cannot be fully fulfilled by potassium. Analysis of protein and total nitrogen content in tissues shows that at high salinity, the ability to synthesize non-protein nitrogen-containing compounds increases in the halophyte and decreases in the glycophyte. Data on proline content dynamics show that its increase in tissues of spinach (salinity levels 150 and 250 mМ) and seablite (salinity levels 0.5 and 750 mМ) is an indicator of plant injury. In seablite and spinach, proline is not a major osmoregulator. Its concentration both in roots and leaves was no more than 2.5 μmol/g fresh weight. The data presented in this work concern the accumulation and distribution of Na+, Cl?, K+ and ions, as well as growth and biochemical parameters. Our data show that the development of adaptation reactions in the whole plants in the conditions of high salinity is determined by morphofunctional systems and their interaction.
基金supported by State Oceanic Administration Specific Public Project of China (No. 201305005)the National Natural Science Foundation of China (No. 31072193)
文摘The Pacific white shrimp, Litopenaeus vannamei, is widely farmed in China. Salinity is a major environmental factor that affects its growth and distribution. Crustacean hyperglycemic hormone is verified to participate in ion transport in response to the salinity challenge mediated by endocrine neurotransmitters(biogenic amines, BAs). In the present study, the contents of BAs and expressions of their receptors were detected in gills of Litopenaeus vannamei exposed to low salinity. The intracellular signaling molecules such as cyclic adenosine monophosphate(cAMP), protein kinase A(PKA), 14-3-3 protein, FXYD2 protein and cAMP response element-binding protein(CREB) were detected. The effects of low salinity on the expressions of Na^+-K^+-ATPase, Na^+/K^+/2 Cl-co-transporter and Cl-transporter and activity of Na^+-K^+-ATPase were also analyzed. The results showed that dopamine and epinephrine concentrations and their receptor expressions were significantly affected by low salinity. The changes of c AMP and PKA were obvious and the expressions of 14-3-3 and FXYD2 peaked at early stages. However, the expression of CREB was only significantly up-regulated on day 9. The activity and expression of Na^+-K^+-ATPase(α subunit) reached a peak on day 1. The expressions of Na^+/K^+/2 Cl-co-transporter and Cl-transporter up-regulated obviously. It suggests that BAs can activate the cAMP-PKA pathway, which further acts on the 14-3-3 and FXYD2 proteins, and ultimately improve the activity of Na^+-K^+-ATPase. Furthermore, after BAs stimulate the cAMP-PKA pathway, PKA phosphorylates the transcription factor CREB and regulates the expressions of ion transport enzymes/transporters. The results in this study are helpful for understanding the response mechanism of endocrine neurotransmitters on osmoregulation in crustaceans.
基金supported by Sari Agricultural Sciences and Natural Resources University
文摘Soil salinity is becoming an increasingly serious constraint to plant growth in many parts of the world; this is particularly common in semi-arid and arid zones. This study was conducted to evaluate the effect of different concentrations of salt on seed germination and seedling growth of Acacia albida and A. salicina. Collected seeds were treated with H2SO4 98% for 35 min then left to germinate in a controlled growth chamber. Seeds were grown at salinity levels of 0.1, 0.2 and 0.3 mol.L1 of NaH2PO4.H20. Germination parameters and seedling growth indices were measured after 35 days. The mean of total length ofA. salicina in all salinity concentrations was more than that of :4. albida. The fresh weight of stem and root of :4, albida was more than that of :4. salicina. Growth of control seedlings was higher than for other treatments and the fresh weight of stems of two species at salt concentrations of 0.2 and 0,3 mol.Ll decreased with increasing concentration of salt. Most Control seeds germinated at salinity of 0.1 mol.Ll and germination index, final germination and seeds stamina was greater at low levels of salinity.