Stomach cancer is still the fourth most common cancer;thus,it remains an important public health burden worldwide,especially in developing countries.The remarkable geographic variations in the rates of stomach cancer ...Stomach cancer is still the fourth most common cancer;thus,it remains an important public health burden worldwide,especially in developing countries.The remarkable geographic variations in the rates of stomach cancer indicate that dietary factors,including a range of food groups to which salt and/or nitrates have been added,may affect stomach cancer risk.In this paper,we review the results from ecologic,case-control and cohort studies on the relationship between salt or salted foods and stomach cancer risk.The majority of ecological studies indicated that the average salt intake in each population was closely correlated with gastric cancer mortality.Most case-control studies showed similar results,indicating a moderate to high increase in risk for the highest level of salt or salted food consumption.The overall results from cohort studies are not totally consistent,but are suggestive of a moderate direct association.Since salt intake has been correlated with Helicobacter pylori(H pylori) infection,it is possible that these two factors may synergize to promote the development of stomach cancer.Additionally,salt may also cause stomach cancer through directly damaging gastric mucus,improving temporary epithelial proliferation and the incidence of endogenous mutations,and inducing hypergastrinemia that leads to eventual parietal cell loss and progression to gastric cancer.Based on the considerable evidence from ecological,case-control and cohort studies worldwide and the mechanistic plausibility,limitation on salt and salted food consumption is a practical strategy for preventing gastric cancer.展开更多
Background: Maternal Iodine Deficiency Disorder can result in inevitable cretinism as well as miscarriages, stillbirth and low birth-weight babies. Objective: There is </span></span></span><span s...Background: Maternal Iodine Deficiency Disorder can result in inevitable cretinism as well as miscarriages, stillbirth and low birth-weight babies. Objective: There is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">need to find out contributing factors towards urinary iodine concentrations of pregnant women. Methods: Therefore, the cross-sectional, descriptive study was conducted to assess t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e patterns of salt utilization and iodine status of pregnant women living in coastal areas of Mon State in January and May, 2013. Result: A total of 144 pregnant women from </span><span style="font-family:Verdana;">Pa-Nga</span><span style="font-family:Verdana;"> village and </span><span style="font-family:Verdana;">Kalokepi</span><span style="font-family:Verdana;"> village in Th</span><span style="font-family:Verdana;">anbyuzayat</span><span style="font-family:Verdana;"> township were asked by using structured questionnaires including age, parity, socioeconomic status and patterns of salt and iodine</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">rich foods (seaweed, fish, prawn) consumption. Casual urine samples were collected from each pregnant woman and urinary iodine concentrations were measured. Three samples each of the iodized salt and non-iodized salt from local markets were collected for determination of iodine content by the iodometric titration method. Only 83.3% of the study population consumed iodized salt and t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e remaining (16.7%) consumed non-iodized salt. The median urinary iodine concentration of the study population was 105 μg/L. The mean urinary iodine level of pregnant women who consumed iodized salt and that of pregnant women who consumed non-iodizes salt were 110.47 ± 67.34 μg/L and 95.83 ± 70.13 μg/L (P = 0.336). Iodine content of the iodized salt and non-iodized salt </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> 20.6 ± 9.2 ppm and 5.1 ± 1.2 ppm respectively. In conclusion, t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e median iodine level of pregnant women was lower than that of the optimal iodine nutrition for pregnant women, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 150 - 250 μg/L and t</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e mean iodine content of salt samples was lower than the permissible level of iodine in iodized salt, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 30 - 40 ppm. Conclusion: Our findings indicate that iodine nutritional status of pregnant women</span></span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"></span><i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"></span><span> in t</span></span></span></span></span><span><span><span><span>h</span></span></span></span><span><span><span><span>is area is insufficient and salt iodization needs to be monitored for the optimal iodine content in iodized salt.展开更多
文摘Stomach cancer is still the fourth most common cancer;thus,it remains an important public health burden worldwide,especially in developing countries.The remarkable geographic variations in the rates of stomach cancer indicate that dietary factors,including a range of food groups to which salt and/or nitrates have been added,may affect stomach cancer risk.In this paper,we review the results from ecologic,case-control and cohort studies on the relationship between salt or salted foods and stomach cancer risk.The majority of ecological studies indicated that the average salt intake in each population was closely correlated with gastric cancer mortality.Most case-control studies showed similar results,indicating a moderate to high increase in risk for the highest level of salt or salted food consumption.The overall results from cohort studies are not totally consistent,but are suggestive of a moderate direct association.Since salt intake has been correlated with Helicobacter pylori(H pylori) infection,it is possible that these two factors may synergize to promote the development of stomach cancer.Additionally,salt may also cause stomach cancer through directly damaging gastric mucus,improving temporary epithelial proliferation and the incidence of endogenous mutations,and inducing hypergastrinemia that leads to eventual parietal cell loss and progression to gastric cancer.Based on the considerable evidence from ecological,case-control and cohort studies worldwide and the mechanistic plausibility,limitation on salt and salted food consumption is a practical strategy for preventing gastric cancer.
文摘Background: Maternal Iodine Deficiency Disorder can result in inevitable cretinism as well as miscarriages, stillbirth and low birth-weight babies. Objective: There is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">need to find out contributing factors towards urinary iodine concentrations of pregnant women. Methods: Therefore, the cross-sectional, descriptive study was conducted to assess t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e patterns of salt utilization and iodine status of pregnant women living in coastal areas of Mon State in January and May, 2013. Result: A total of 144 pregnant women from </span><span style="font-family:Verdana;">Pa-Nga</span><span style="font-family:Verdana;"> village and </span><span style="font-family:Verdana;">Kalokepi</span><span style="font-family:Verdana;"> village in Th</span><span style="font-family:Verdana;">anbyuzayat</span><span style="font-family:Verdana;"> township were asked by using structured questionnaires including age, parity, socioeconomic status and patterns of salt and iodine</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">rich foods (seaweed, fish, prawn) consumption. Casual urine samples were collected from each pregnant woman and urinary iodine concentrations were measured. Three samples each of the iodized salt and non-iodized salt from local markets were collected for determination of iodine content by the iodometric titration method. Only 83.3% of the study population consumed iodized salt and t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e remaining (16.7%) consumed non-iodized salt. The median urinary iodine concentration of the study population was 105 μg/L. The mean urinary iodine level of pregnant women who consumed iodized salt and that of pregnant women who consumed non-iodizes salt were 110.47 ± 67.34 μg/L and 95.83 ± 70.13 μg/L (P = 0.336). Iodine content of the iodized salt and non-iodized salt </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">was</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> 20.6 ± 9.2 ppm and 5.1 ± 1.2 ppm respectively. In conclusion, t</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e median iodine level of pregnant women was lower than that of the optimal iodine nutrition for pregnant women, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 150 - 250 μg/L and t</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">e mean iodine content of salt samples was lower than the permissible level of iodine in iodized salt, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, 30 - 40 ppm. Conclusion: Our findings indicate that iodine nutritional status of pregnant women</span></span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"></span><i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"></span><span> in t</span></span></span></span></span><span><span><span><span>h</span></span></span></span><span><span><span><span>is area is insufficient and salt iodization needs to be monitored for the optimal iodine content in iodized salt.