Aluminium alloy(AA) 2024 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to corrosion attack in chloride containing media. In the present investiga...Aluminium alloy(AA) 2024 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to corrosion attack in chloride containing media. In the present investigation, AA2024 aluminium alloy rolled plates of 5 mm in thickness were friction stir welded. Corrosion performances of the specimens were evaluated by conducting salt fog tests in Na Cl solution at different p H values, chloride ion concentrations and spraying time. In addition, an empirical relationship was established to predict the corrosion rate of friction stir welds of AA2024 aluminium alloy. A central composite rotatable design including three factors and five levels was used to minimize the number of experiments. Response surface methodology(RSM) was used to develop the relationship. The corrosion rate decreased under neutral p H conditions. The corrosion rate increased in acidic and basic conditions. It was also found that the corrosion rate decreased with the increase of spraying time, but the corrosion tended to be uniform with the increment of time and with the increase in the chloride ion concentration, and the corrosion rate increased in the salt spray corrosion test.展开更多
文摘Aluminium alloy(AA) 2024 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to corrosion attack in chloride containing media. In the present investigation, AA2024 aluminium alloy rolled plates of 5 mm in thickness were friction stir welded. Corrosion performances of the specimens were evaluated by conducting salt fog tests in Na Cl solution at different p H values, chloride ion concentrations and spraying time. In addition, an empirical relationship was established to predict the corrosion rate of friction stir welds of AA2024 aluminium alloy. A central composite rotatable design including three factors and five levels was used to minimize the number of experiments. Response surface methodology(RSM) was used to develop the relationship. The corrosion rate decreased under neutral p H conditions. The corrosion rate increased in acidic and basic conditions. It was also found that the corrosion rate decreased with the increase of spraying time, but the corrosion tended to be uniform with the increment of time and with the increase in the chloride ion concentration, and the corrosion rate increased in the salt spray corrosion test.