期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Experiments on mechanical properties of salt rocks under cyclic loading 被引量:9
1
作者 Weiguo Liang Chuanda Zhang +3 位作者 Hongbo Gao Xiaoqin Yang Suguo Xu Yangsheng Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期54-61,共8页
The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrou... The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit. 展开更多
关键词 salt rock mechanical behavior bedded salt deposit gas storage cyclic loading
下载PDF
Failure transition of shear-to-dilation band of rock salt under triaxial stresses 被引量:3
2
作者 Jianfeng Liu Xiaosong Qiu +3 位作者 Jianxiong Yang Chao Liang Jingjing Dai Yu Bian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期56-64,共9页
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ... Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states. 展开更多
关键词 Rock salt Cyclic mechanical loading Shear band Dilation band Underground gas storage(UGS)
下载PDF
Mechanical behavior of salt rocks: A geomechanical model
3
作者 Saeed Shad Negar Razaghi +1 位作者 Davood Zivar Soheil Mellat 《Petroleum》 EI CSCD 2023年第4期508-525,共18页
The geomechanical behavior of salt rocks is a significant concern during drilling and development operations in some hydrocarbon reservoirs and underground gas storage sites.In this study,the static and dynamic salt r... The geomechanical behavior of salt rocks is a significant concern during drilling and development operations in some hydrocarbon reservoirs and underground gas storage sites.In this study,the static and dynamic salt rock geomechanical properties from a field in southwest Iran were evaluated using experiments such as waves'velocities,and thermo-mechanical coupled uniaxial and triaxial compression tests.As a result and by considering both the petrophysical well logs and laboratory data of the waves’velocities,it is observed that the elastic properties of the core samples are concentrated within a narrow range unless an abnormality causes scatter.The results of uniaxial compression tests showed that rock strength decreases with increasing temperature linearly.In addition,the reduction of rock strength was observed with increasing porosity of the core samples as expected.In the case of triaxial compression tests,applying confining pressure on the core sample caused an increment in rock strength,while temperature decreased rock strength.The temperature also increased cohesion and decreases friction angle.The ratio of changes in stress to strain was used to investigate the dynamic changes in the geomechanical state.The maximum 0.25 damage factor was observed for the core samples for different definitions of the damage factor.Finally,we propose a novel analytical model to predict the stress-strain behavior of salt rocks at different conditions.The model was validated using experimental results and indicated a satisfactory accuracy. 展开更多
关键词 salt rock Underground gas storage GEOMECHANICS Dynamic and static mechanical properties Transition zone Damage factor
原文传递
Fatigue properties and damage constitutive model of salt rock based on CT scanning
4
作者 Junbao Wang Xiao Liu +3 位作者 Qiang Zhang Xinrong Liu Zhanping Song Shijin Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期245-259,共15页
To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,an... To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading. 展开更多
关键词 salt rock Cyclic loading CT scanning Mesoscopic pore evolution Constitutive model
下载PDF
Mineralogy,microstructures and geomechanics of rock salt for underground gas storage 被引量:2
5
作者 Veerle Vandeginste Yukun Ji +1 位作者 Frank Buysschaert George Anoyatis 《Deep Underground Science and Engineering》 2023年第2期129-147,共19页
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct... Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns. 展开更多
关键词 CREEP hydrogen IMPURITIES rock salt salt solution mining underground gas storage
下载PDF
Laboratory study of the factors affecting hydraulic fracturing effect for inter-salt oil shale layers,Qianjiang Depression,China
6
作者 Jun Zhou Guang-Ai Wu +4 位作者 Ya-Nan Geng Yin-Tong Guo Xin Chang Cheng-Yong Peng Chuan-Zhi Ai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1690-1706,共17页
This study aims to investigate the potential factors affecting hydraulic fracturing of inter-salt oil shale reservoirs in the Qianjiang Depression,China.Using the inter-salt shale samples,the re-crystallization seepag... This study aims to investigate the potential factors affecting hydraulic fracturing of inter-salt oil shale reservoirs in the Qianjiang Depression,China.Using the inter-salt shale samples,the re-crystallization seepage tests,rock mechanical tests under high temperature and pressure,salt rock creep tests,and direct shear tests were conducted.The testing results suggest several major factors that affect hydraulic fracturing effects in the end.First,the seepage of reservoir and fracturing fluid through hydraulic frac-tures leads to salt dissolution and crystallization,reducing the effective seepage area of fractures.Second,the salt crystal may block the pore throats or micro fractures after brine invades the shale,decreasing the overall permeability.Third,the low strength and obvious plasticity of inter-salt shale and the strong creep characteristics of salt rock raise difficulties for proppant to effectively support fracture walls,thereby sharply narrowing the hydraulic fracture width.Lastly,the weak interfaces(bedding planes and lithology interfaces)in inter-salt oil shale reservoirs restrict the height of hydraulic fractures,resulting in the disconnection of seepage channels between multiple inter-salt shale reservoirs.Thus,several factors together reduce reservoir permeability,weaken the fluid flow capacity in the fracture,narrow the fracture width,and limit the effective stimulation volume,resulting in weaken the effect hydraulic fracturing. 展开更多
关键词 Shale oil salt rock Qianjiang Depression Hydraulic fracturing RECRYSTALLIZATION
下载PDF
Investigation of rock salt layer creep and its effects on casing collapse 被引量:13
7
作者 S.Reza Taheri Ali Pak +2 位作者 Saeed Shad Behzad Mehrgini Meisam Razifar 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期357-365,共9页
Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may... Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may be the main cause for these incidents because of its peculiar creep behavior. In this research, triaxial creep experiments have been conducted on Gachsaran salt samples under various temperatures and differential stresses. The main purpose was to determine the creep characteristics of Gachsaran rock salt,and to examine the role of creep in several casing collapses that occurred in this formation. Results indicated that the halite rock salt of Gachsaran formation basically obeys the power law;however, its creep parameters are quite different from other halite rocks elsewhere. The time-dependent creep of Gachsaran rock salt exhibits strong sensitivity to temperature change;however, its sensitivity to variation of differential stress is rather low. The numerical simulation of the rock salt creep in a real oil well demonstrated the importance of creep and reservoir conditions on the safety factor of the tubing related to casing collapse. 展开更多
关键词 Rock salt Gachsaran formation CREEP Power law Casing collapse Numerical simulation
下载PDF
A fatigue damage model for rock salt considering the effects of loading frequency and amplitude 被引量:9
8
作者 Wang Yasong Ma Linjian +1 位作者 Fan Pengxian Chen Yan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期955-958,共4页
With the large-scale construction of underground gas storage in salt deposit, much more efforts have been made to assess the fatigue properties of rock salt. The fatigue damage processes the primary, steady,and accele... With the large-scale construction of underground gas storage in salt deposit, much more efforts have been made to assess the fatigue properties of rock salt. The fatigue damage processes the primary, steady,and accelerated phases, which is similar to the axial irrecoverable deformation compiled from the loci of the loading cycles of rock salt. The cumulative fatigue damage increases with a decrease in the loading frequency and with an increase in the stress amplitude within the range tested. To take into account the effects of loading frequency and amplitude on the fatigue behavior of rock salt subjected to cyclic loading, a low cycle fatigue damage model was exclusively established combined with the Manson–Coffin formula. The proposed damage evolution equation was validated with experimental results and proved to be efficient in the prediction of fatigue damage tendency of rock salt under different loading frequencies and amplitudes. 展开更多
关键词 Rock salt FATIGUE FREQUENCY Stress amplitude DAMAGE
下载PDF
Statistical evaluation of five failure criteria for intact salt rock 被引量:2
9
作者 马林建 刘新宇 +1 位作者 方秦 马淑娜 《Journal of Central South University》 SCIE EI CAS 2011年第3期925-931,共7页
Five multiparameter empirical criteria were exclusively evaluated by comparing them with the strength data covering various stress conditions to find out which failure criterion best fits the test data and describes t... Five multiparameter empirical criteria were exclusively evaluated by comparing them with the strength data covering various stress conditions to find out which failure criterion best fits the test data and describes the mechanical behavior of the salt rock sequence (halite,bedded composite specimens and anhydrite interlayers).Full-scale comparison of all criteria for the three rock types was conducted based on five standard statistics calculated from least squares curve-fitting,which measures both the goodness of fitting and the quality of future prediction.The results indicate that all five nonlinear criteria with a basic power form are efficient in predicting the strength trend in the low tension area as well as in the high compression area of the soft rocks.The parameters obtained for the bedded rock salt are somewhat in the ones for the "pure" rocks and are even closer to those obtained for the halite.The generalized Hoek-Brown criterion is proven to perform best to two rock strength data followed by one for the Bieniawski empirical criterion,thus is the best candidate for the analysis of the salt rock.The Sheorey empirical criterion consistently achieves an intermediate performance for all the three rocks.It seems that the superiority of the poly-axial criteria (the Mogi 1967 criterion and the N-type criterion) over the former three triaxial criteria no longer exists when applied to the conventional triaxial strength data.Besides,the method of tension cut-off was proposed to solve the ambiguity problem of the two poly-axial criteria in the tension field in the plane of the major (σ1) andminor principal stress (σ3). 展开更多
关键词 salt rock sequence bedded rock salt failure criterion curve fitting
下载PDF
Rheology of rock salt for salt tectonics modeling 被引量:2
10
作者 Shi-Yuan Li Janos L.Urai 《Petroleum Science》 SCIE CAS CSCD 2016年第4期712-724,共13页
Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the ... Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures(20–200 ℃) in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments.Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep(n = 5) with the appropriate material parameters in the salt tectonic modeling. 展开更多
关键词 Rock salt rheology Power law creep Dislocation creep MODELING
下载PDF
A power function model for simulating creep mechanical properties of salt rock 被引量:1
11
作者 LI Huan Ngaha Tiedeu WILLIAM +2 位作者 Jaak DAEMEN ZHOU Jun MA Chang-kun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期578-591,共14页
In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe ... In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe the variation of the parallel bonded diameter(PBD)over time.By comparing with the parallel-bonded stress corrosion(PSC)model,a smaller stress fluctuation and smoother creep strain−time curves can be obtained by this power function model at the same stress level.The validity and adaptability of the model to simulate creep deformation of salt rock are verified through comparing the laboratory creep test curves and the Burgers model fitting result.The numerical results reveal that this model can be capable of capturing the creep deformation and damage behavior from the laboratory observations. 展开更多
关键词 salt rock creep damage particle flow code power function model
下载PDF
Experimental study on repair characteristics of damaged rock salt of underground gas storage 被引量:1
12
作者 YIN Hong-wu MA Hong-ling +3 位作者 SHI Xi-lin LI Hao-ran GE Xin-bo GAO Ang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2185-2196,共12页
Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperatur... Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperature and pressure can promote the self-healing of rock salt in the excavation damage zone (EDZ). Laboratory tests were conducted to study the promoting effect. The permeability of two intact rock salt specimens was tested. Then they were damaged into two kinds of the state respectively through uniaxial compression. After that, they were put in saturated brine (with a temperature of 50℃ and pressure of 12 MPa, which we called the repair environment in this paper) for 7 d. Finally, the permeability and mechanical properties were obtained after the damaged specimens being repaired. The results show that the permeability of intact rock salt is below 10^-19 m^2;the permeability increases by more than two orders because of damage;the permeability decreases significantly after being repaired, which can be comparable to its intact state. Discussions of the repair mechanisms are presented (especially the mechanism of recrystallization), which may help to provide significant guidance for the study of the tightness and stability of gas storage facilities in China. 展开更多
关键词 gas storage rock salt PERMEABILITY DAMAGE uniaxial compression SELF-HEALING
下载PDF
Self-recovery ability of stress-damaged salt rock experiment 被引量:1
13
作者 De-yi JIANG Qiao-xian LI +2 位作者 Jie CHEN Song REN Chun-he YANG 《Journal of Coal Science & Engineering(China)》 2013年第1期63-68,共6页
After being compressed to different plastic deformation stages, the salt rock samples with lateral stress damage of 0.2, 0.3, 0.4, and 0.5 were selected. Ultrasonic technology was used to monitor the wave velocity var... After being compressed to different plastic deformation stages, the salt rock samples with lateral stress damage of 0.2, 0.3, 0.4, and 0.5 were selected. Ultrasonic technology was used to monitor the wave velocity variation law of stress-dam-aged salt rock during the self-recovery experiment under different temperatures to analyze the influence of initial stress damage and temperature during the self-recovery of salt rock. The experiment shows that the change of salt rock axial wave velocity is smaller than that of lateral wave velocity. The sample ultrasonic velocity is positively correlated with the time of self-recovery, and the damage had been recovered to a certain extent. In the first 200 hours of self-recovery stage, the salt rock lateral damage recovers fast, and then the damage remains almost unchanged. The value of lateral stable damage is positively correlated with the value of lateral initial stress damage. With the increase of temperature, the recovery of lateral damage speeds up and the value of stable damage decreases; the axial damage of salt rock almost remains unchanged during the self-recovery experiment. 展开更多
关键词 salt rock DAMAGE SELF-RECOVERY ULTRASONIC
下载PDF
Deformation Mechanisms and Safe Drilling Fluids Density in Extremely Thick Salt Formations 被引量:1
14
作者 Yang Henglin Chen Mian Zhang Guangqing 《Petroleum Science》 SCIE CAS CSCD 2007年第4期56-61,共6页
Hydrocarbons are very often associated with salt structures. The oil and gas industry is often required to drill along and through long salt sections to reach and recover hydrocarbons. The unique physical properties o... Hydrocarbons are very often associated with salt structures. The oil and gas industry is often required to drill along and through long salt sections to reach and recover hydrocarbons. The unique physical properties of salt require special techniques to ensure borehole stability and adequate casing design. This paper assumed that the mechanical behavior of salt is regulated by the magnitude of mean stress and octahedral shear stress and under the influence of different stress conditions the deformation of rock salt can be represented by three domains, i.e. compression domain, volume unchanged domain, and dilatancy domain, which are separated by a stress dependent boundary. In the compression domain, the volume of salt decreases until all microcracks are closed, with only elastic deformation and pure creep; in the volume unchanged domain the deformation is considered steady incompressible flow controlled by pure creep; and in the dilatancy domain the volume of salt increases during deformation due to micro-cracking, causing damage and accelerating "creep" until failure. This paper presents a hypothesis that the borehole is stable only when the magnitude of octahedral shear stress is below the dilatancy boundary. It gives the design method for determining drilling fluids density, and calculates the closure rate ofborehole with the recommended drilling fluids density. If the closure rate of the borehole is less than 0.1%, the drilling fluids density window can be used during drilling through extremely thick salt formations. 展开更多
关键词 Rock salt borehole stability deformation mechanisms constitutive equations equivalent viscosity drilling fluids density
下载PDF
Deformations of surface and rock mass in salt mines of Southern Poland 被引量:2
15
作者 J .Szewczyk G. Kortas 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期310-314,共5页
关键词 ROCK Deformations of surface and rock mass in salt mines of Southern Poland
下载PDF
Effect of insoluble materials on the volumetric behavior of rock salt
16
作者 Mejda Azabou Ahmed Rouabhi Laura Blanco-Martìn 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期84-97,共14页
This paper focuses on the presence of nodules of insoluble materials within salt specimens,and their effect on the volumetric strain measurements and the dilatancy phenomenon.We analyzed experimental results of over 1... This paper focuses on the presence of nodules of insoluble materials within salt specimens,and their effect on the volumetric strain measurements and the dilatancy phenomenon.We analyzed experimental results of over 120 conventional triaxial compression tests,and found that in 20%of the cases,the volumetric strain measurements were atypical.We also noted that the natural variability of the specimens can lead to a non-negligible data scattering in the volumetric strain measurements when different specimens are subjected to the same test.This is expected given the small magnitude of those strains,but it occasionally implies that the corresponding specimens are not representative of the volumetric behavior of the studied rock.In order to understand these results,we numerically investigated salt specimens modeled as halite matrices with inclusions of impurities.Simulations of triaxial compression tests on these structures proved that such heterogeneities can induce dilatancy,and their presence can lead to the appearance of tensile zones which is physically translated into a micro-cracking activity.The modeling approach is validated as the patterns displayed in the numerical results are identical to that in the laboratory.It was then employed to explain the observed irregularities in experimental results.We studied the natural variability effect as well and proposed a methodology to overcome the issue of specimen representativity from both deviatoric and volumetric perspectives. 展开更多
关键词 Rock salt DILATANCY Material heterogeneity Natural variability Triaxial tests Virtual laboratory
下载PDF
Assessment of the properties of polycrystalline rock salt synthesized under nominally dry and wet conditions
17
作者 Amirsalar Moslehy Khalid Alshibli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期311-320,共10页
Polycrystalline rock salt’s compression is a function of applied stresses,exposure duration to the applied stresses,ambient temperature,and water content.Rock salt’s compressional behavior under different conditions... Polycrystalline rock salt’s compression is a function of applied stresses,exposure duration to the applied stresses,ambient temperature,and water content.Rock salt’s compressional behavior under different conditions and its effects on the specimens’mechanical properties have been investigated in the literature.However,the one-dimensional(1D)compression behavior of polycrystalline rock salt at various water contents and how the specimen’s compression at different water contents further affects its physical and mechanical properties are not fully understood yet.In this study,polycrystalline rock salt specimens were prepared under nominally dry and wet conditions and some of the dry and wet specimens were annealed after the preparation.The relationship between the porosity of the specimens and the logarithm of the applied axial stresses during the 1D compression was found to follow a linear relationship after reaching unique critical porosities of 32%and 37%for the dry and wet specimens,respectively.Unloading and reloading the specimens did not result in any major changes in the porosity of the specimens.The specimens compressed under wet condition showed an average final porosity of 2.6%compared to 6.9%for the dry specimens.The dry and wet specimens that were annealed after the compression exhibited a lower porosity in comparison to the dry and wet specimens,respectively.Unconfined compression experiments on the specimens showed dry and wet specimens possess averaged unconfined compressive strengths(σ_(u))of 64.3 and 16.2 MPa,respectively.Annealing decreased σ_(u)of the dry specimens to 39.6 MPa and increased σ_(u)of the wet specimens to 41 MPa. 展开更多
关键词 HALITE Rock salt Unconfined compression One-dimensional(1D)compression
下载PDF
Numerical modeling of thermally-induced fractures in a large rock salt mass
18
作者 D.T. Ngo FL. Pellet 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期844-855,共12页
Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling exp... Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling experiment performed in an underground rock salt mine. The theory of fracture mechanics was embedded in the extended finite element code used. The results provide reliable information on fracture location and fracture geometry. Moreover, the timing of the fracture onset, as well as the stress redis- tribution due to fracture propagation, is highlighted. The conclusions of this numerical approach can be used to improve the design of rock salt caverns in order to guarantee their integrity in terms of both their tightness and stability. 展开更多
关键词 Fracture mechanics Thermal loading Extended finite element method (XFEM)simulation Rock salt
下载PDF
Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil
19
作者 HE Wenyuan SHI Buqing +6 位作者 FAN Guozhang WANG Wangquan WANG Hongping WANG Jingchun ZUO Guoping WANG Chaofeng YANG Liu 《Petroleum Exploration and Development》 SCIE 2023年第2期255-267,共13页
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g... The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions. 展开更多
关键词 lacustrine carbonates salt rock deep-water oilfield igneous rock identification reservoir prediction hydrocar-bon detection supercritical CO_(2) Santos Basin Brazil
下载PDF
Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process
20
作者 Wei Wang Qin Yang +1 位作者 Kun Qian Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期72-78,I0003,共8页
In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the ... In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the increasing cycle number to high voltages. It was found that the decline of charge transfer impedance could be related to the structural and compositional change of cathode electrolyte interphase(CEI) of NCM811 when charging to high voltages, based on the characterization of electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The corresponding mechanism has also been proposed in this study. Specifically, due to the increasing roughness of cathode surface, the bottom of CEI film and cubic phase on cathode surface form a transition region mainly at high voltages, leading to the nonobvious boundary. This newly formed transition region at high voltages could promote the Li ion diffusion from electrolyte to cathode, then reducing charge transfer impedance. Additionally, the decrease of Li F on the surface of the cathode could also make a contribution to lower the interface impedance. This study delivers a different evolution of CEI on NCM811, and the impact of CEI evolution on electrochemical performance when charging to a high voltage. 展开更多
关键词 Cathode electrolyte interface NCM811 OVERCHARGE Rock salt phase
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部