Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficie...Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficiency and accuracy of the sea spray induced air-sea heat and salt fluxes.This is because the microphysical process of sea spray evolution in the air is of extreme complexity.In this study,we iteratively calculated the sea spray induced air-sea heat and salt fluxes at various weather condition.To do so,we implemented one novel wave-steepness-dependent sea spray model into a bulk air-sea fluxes algorithm and utilized other sea spray models as comparisons.Based on the improved wave-dependent bulk turbulent algorithm,we observed that despite the negative contribution of sea spray to the sensible heat fluxes,the sea spray positively contributes to the air-sea latent heat fluxes,leading to an overall increase in the total air-sea heat fluxes.The additional heat fluxes caused by sea spray may be the missing critical process that can clarify the discrepancies observed between measured and modelled Tropical Cyclone’s development and intensification.In addition to heat fluxes,we observed that sea spray has significant impacts on the air-sea salt fluxes.As the sea salt particles are one of the main sources of the atmosphere aerosol,our results imply that sea spray could impact global and regional climate.Thus,given the significance of sea spray on the air-sea boundary layer,sea spray effects need to be considered in studies of air-sea interaction,dynamics of atmosphere and ocean.展开更多
Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The p...Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.展开更多
The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scann...The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scanning electron microscope(SEM),X-ray Diffraction(XRD)and potentiodynamic polarization tests.The corrosion degree of Mg–7Gd–5Y–1Nd–0.5Zr alloys in Ca(NO_(3))_(2)salt spray was very shallow by corrosion morphology and the corrosion route was extended along the surface in texture-like shape,while the alloy in NaCl and(NH4)_(2)SO_(4)salt spray were major local corrosion and there were serious corrosion pits on the surface.The weight loss rates in(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray was respectively 0.4147,0.1618 and 0.0725 mg/(cm2 d−1).The results of residual mechanical properties indicated that the corrosion order in salts spray of Mg–7Gd–5Y–1Nd–0.5Zr alloys is NH4SO4>NaCl>Ca(NO_(3))_(2),which was consistent with the results of potentiodynamic polarization tests.The type of the salts will play a vital role in the initiation of the corrosion of EW75 alloy when they are used in the atmosphere environments.Inorganic salts with the smaller PH value after dissolution will have a stronger impact on the corrosion of EW75 magnesium alloys.展开更多
The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observe...The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observed with SEM and EDS, respectively, and the effects of salt spray on micro-structures of VC coating were analyzed. Moreover, the invalidation mechanism of VC coating after salt spray and its effect on substrate material were discussed. The experimental results shown that the uniformity and integrity of VC coating surface are destroyed by salt spray for 120 h, a large number of the pits are produced on the coating surface, and the coating falls off, which speeds corrosion breakage of its substrate; the oxidated film on its surface becomes rougher, broken and discontinuous, and falls off easily, which reduce the ability of resistance salt spray; the failure modes of VC coating after salt spray are expressed with falling off of oxidated film, stress concentration and pore effect and so on, the corrosion breakage of oxidated film is the corrosion result of deoxidization corrosion from oxygen and HCl produced by NaCl and vapor.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
The objective of the present work was to determine the influence of the neutral salt spray corrosion on the wear resistance of HVOF sprayed NiCr-Cr3C2 coating with intermediate layer. Ni-Zn-Al2O3 coatings as interlaye...The objective of the present work was to determine the influence of the neutral salt spray corrosion on the wear resistance of HVOF sprayed NiCr-Cr3C2 coating with intermediate layer. Ni-Zn-Al2O3 coatings as interlayers were prepared by low pressure cold spray(LPCS) between NiCr-Cr3C2 cermet coatings to form a sandwich structure to enhance the corrosion resistance properties. The tribological properties were examined using the UMT-3 fricition and wear tester by line-contact reciprocating sliding under dry and salt spray one week corrosion. The morphology, element distribution, and phase compositions of the coating and worn sufaces were analyzed by using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction respectively. The corrosion behavior of the coating was studied by the open-circuit potential, the electrochemical impedance spectroscopy, potentiodynamic polarization, and salt spray corrosion methods. It is found that the sandwich structured coating has better corrosion resistance than the single layer coating. The results show that under dry wear conditions, the wear mechanism is abrasive and adhesive wear, whereas under salt spray corrosion conditions it becomes corrosion wear. The friction coefficient of the sandwich structured coating after salt spray corrosion is slightly lower than the dry friction coefficient, but the weight of the wear loss is lower than that under dry condition.展开更多
This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gellin...This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gelling material,a BF/MOC composite material was prepared.Firstly,the effect of BF addition content on the basic mechanical properties of the composites was investigated.Then,through the salt spray corrosion test,the durability damage deterioration evaluation analysis was carried out from both macroscopic and microscopic aspects using mass change,relative dynamic modulus of elasticity(RDME)change,SEM analysis and FT-IR analysis.Finally,a GM(1,1)-Markov model was established to predict the durability life of composite materials by using durability evaluation indicators.The results show that:when the BF content is 0.10%(by volumetric content),the composites have the best mechanical properties and resistance to salt spray corrosion.However,when the volume of BF content exceeds 0.10%,a large number of magnesium salt crystallization products are observed from the microscopic point of view,and the corrosion of the main strength phase of MOC is more serious.The prediction results of the GM(1,1)-Markov model are highly identical with the raw data.In addition,using the change of RDME as a predictor,RDME is more sensitive to environmental factor compared to the change of mass.Predictions using the change of RDME as a threshold indicate that MOC-BF0.10 has the longest durability life,which is 836 days.The model is important to promote the application of MOC composites in the salt lake region and to promote the healthy development of green building materials.展开更多
The corrosion fatigue propagation behaviour of high strength low alloy Cr-Ni and Si-Mn steels has been investigated in 3.5 %NaCl solution spryly at the frequencies of 0.1 and 5.5 Hz. It was shown that the fatigue crac...The corrosion fatigue propagation behaviour of high strength low alloy Cr-Ni and Si-Mn steels has been investigated in 3.5 %NaCl solution spryly at the frequencies of 0.1 and 5.5 Hz. It was shown that the fatigue crack initiation resistances of the two steels are significantly re- duced in salt spray;the fatigue crack growth rates of steels increase with the decrease of fre- quency and are much higher in salt spray than in air within low ΔK range.A critical stress in- tensity factor was observed for each steel and the crack growth stoppage will occur if the ΔK values are lower than it.It was found that the active dissolution makes great contribution to the fatigue crack growth within low ΔK range.展开更多
Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixin...Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 10<sup>15</sup> particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems.展开更多
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a...The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.展开更多
Hollow Bi2WO6 microspheres are successfully synthesized by a facile ultrasonic spray pyrolysis(USP) method using NaCl as a salt template.The as-prepared hollow microspheres assembled as nanoplates with dimensions of...Hollow Bi2WO6 microspheres are successfully synthesized by a facile ultrasonic spray pyrolysis(USP) method using NaCl as a salt template.The as-prepared hollow microspheres assembled as nanoplates with dimensions of approximately 41-148 nm and are dispersed with non-uniform pores on the template surface.By swapping the salt template with KC1 or Na2SO4,different morphologies of Bi2WO6 are obtained.The experimental results demonstrate that NaCl plays a key role on the formation of Bi2WO6 with hollow structures.The specific growth mechanism of hollow microspheres was studied in detail.The Bi2WO6 hollow microspheres exhibit an excellent photocatalytic efficiency for NO removal under solar light irradiation,which is 1.73 times higher than for the Bi2WO6 obtained in the absence of any salt template.This enhancement can be ascribed to the simultaneous improvement on the surface area and visible light-harvesting ability from the hollow structures.Electron spin resonance(ESR) results suggest that both radicals of ·OH and ·O2^- are involved in the photocatalytic process over the BWO-NaCl sample.The production of ·O2^- radicals offers better durability for NO removal.展开更多
Salt spray is a natural disturbance in coastal region.Arbuscular mycorrhizal fungi(AMF)are recognized as bio-ameliorators of soil salinity in plants.However,the mechanism through which AMF protects Cinnamomum camphora...Salt spray is a natural disturbance in coastal region.Arbuscular mycorrhizal fungi(AMF)are recognized as bio-ameliorators of soil salinity in plants.However,the mechanism through which AMF protects Cinnamomum camphora against aerial salinity remains unclear.To address this knowledge gap,plants were subjected to four fungal regimes,namely sterilized fungal inoculum,Glomus tortuosum,Funneliformis mosseae,or a combination of these two fungi,and exposed to three sprayed-salt regimes(0,7,or 14 mg NaCl cm−2 d−1)in a greenhouse.Salt spray significantly decreased photosynthetic capabilities,total dry weight,and salinity tolerance of non-mycorrhizal plants.Mycorrhizal inoculation,particularly a combination of G.tortuosum and F.mosseae,evidently mitigated the detrimental effects induced by salt spray.Meanwhile,mycorrhiza-mediated protection depended on the intensity of sprayed salt and the identity of fungal taxa.Furthermore,the enhanced resistance of mycorrhizal C.camphora seedlings to aerial salinity was mainly owing to increased leaf thickness and photosynthetic capabilities.These findings imply that inoculation with combined fungi could be an optimal strategy for cultivating C.camphora plants in coastal regions.The results gained hold the potential to offer both theoretical and practical guidance for the managers of coastal ecosystems in soil restoration and conservation.展开更多
The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by usin...The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by using low-pressure cold spray (LPCS) method to improve the salt fog corrosion resistance properties of the supersonic plasma spray (SPS) NiCr-Cr_(3)C_(2) coatings.The friction and wear performance for the double-layer and single-layer NiCr-Cr_(3)C_(2) coatings were carried out by line-contact reciprocating sliding,respectively.Combined with the coating surface analysis techniques,the effect of the salt fog corrosion on the tribological properties of the double-layer coatings was studied.The results showed that the double-layer coatings exhibited better wear resistance than that of the single-layer coatings,due to the better corrosion resistance of the intermediate layer;the wear mass losses of the double-layer coatings was reduced by 70%than that of the single layer coatings and the wear mechanism of coatings after salt fog corrosion conditions is mainly corrosion wear.展开更多
Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to impr...Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to improve of the combination of droplets and coking coal dust.Based on monomer optimization and compounding analysis,two surfactant monomers,fatty alcohol ether sodium sulfate(AES)and sodium dodecyl benzene sulfonate(SDBS)were selected as the surfactant components of the dust suppressant.The surfactant monomers were combined with four inorganic salts and the reverse osmosis moisture absorption of each solution was determined.By combining the reverse osmosis moisture absorption values with the water retention experimental results,CaCl_(2)was identified as the optimal inorganic salt additive for the dust suppressant.Finally,the optimal concentration of each component was obtained using orthogonal experimental design i.e.,AES(0.03%),SDBS(0.05%),and CaCl_(2)(0.4%).The dust suppressant solution formulated using this method had a high moisture absorption capacity and excellent performance.展开更多
WC based cermet coatings have been considered as alternative replacements to the more traditional hard chrome plating for improved surface properties of aircraft landing gear. While these coatings are used in engineer...WC based cermet coatings have been considered as alternative replacements to the more traditional hard chrome plating for improved surface properties of aircraft landing gear. While these coatings are used in engineering applications requiring superior hardness and improved wear resistance, little is known about the corrosion resistance. In this study, three WC based composite coatings were deposited onto ferritic stainless steel substrates using high velocity oxy fuel (HVOF) technology. Salt spray testing and potentiodynamic scanning studies in a saline environment were conducted on the coatings. Characterisation of the coating structure, composition and morphology, was carried out, prior to and after corrosion testing, using optical microscopy, scanning electron microscopy and EDX elemental analysis. The results showed that poor corrosion performance was exhibited by all three coatings. This was attributed to the high levels of porosity and the presence of micro-cracks within the coatings, resulting in attack of the substrate directly by the saline environment and possible galvanic coupling effects between the substrate and the coating. Dissolution and / or erosion of specific phases within the coating, resulting in the formation of micro-channels and increased number / size of voids may have accelerated corrosion of the system.展开更多
The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),...The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.展开更多
The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PE...The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.展开更多
The initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments(pH=3.5)are studied by Scanning Electron Microscope(SEM),optical microscope,Fourier Transform Infrare...The initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments(pH=3.5)are studied by Scanning Electron Microscope(SEM),optical microscope,Fourier Transform Infrared Spectroscopy(FT-IR),X-Ray Diffraction(XRD),potentiodynamic polarization,Electrochemical Impedance Spectroscopy(EIS),and Scanning Kelvin Probe(SKP).The results show that pitting corrosion occurs at the initial corrosion stage,and the potential difference between the second phase particles is the main cause of pitting.Pitting pits on different locations gradually expand and coalesce with the proceeding of corrosion.The main components of corrosion products are Al_(2)O_(3),Al(OH)_(3),and AlCl_(3),and the generation rate of the corrosion product layer under the salt spray environment is larger than that under acid immersion environment.Under both environments,the Volta potential distribution first disperses and then concentrates,while the charge transfer resistance first decreases and then increases with the corrosion time.The Volta potential gradually shifts in a positive direction,indicating that corrosion products have an inhibitory effect on corrosion.After the same corrosion time,the corrosion product layer resistance and the expectation of the Volta potential of the salt spray sample are higher than those of the immersion sample.Comparatively,the corrosion current density for the salt spray sample is significantly lower than the immersion sample,which indicates that the thicker the corrosion product layer,the stronger the inhibition of corrosion reaction.展开更多
The corrosion behavior of ZL104 alloy at different states (as-cast and heattreatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated afterrefinement and modification has the least ...The corrosion behavior of ZL104 alloy at different states (as-cast and heattreatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated afterrefinement and modification has the least corrosive resistance compared with the sample bearingas-cast structure at the beginning of the corrosion. As the corrosion process continued, however,the trend reversed itself. After 44 h continuous corrosion, the corrosive rates of all samples tendto be stable. After experiments, the sample bearing as-cast structure had the most corrosiveproducts on the surface whereas the sample being refined and modified had the least products. TheFourier transformation infrared spectroscopy (FTIR) analyses of the corrosion products show thatthese products are composed of hydroxyl-containing substances.展开更多
The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground...The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground support system, significant campaigns of rehabilitation are often required in corrosion affected areas which also expose the workers to hazardous conditions. The most common corrosion protection for steel ground support utilises sacrificial systems such as galvanising. Galvanising has previously been proven to be susceptible to some corrosion processes. Stainless steel is the most effective in resistance to corrosion, but can be cost prohibitive, and its mechanical properties often make it unsuited to use in ground support components. Providing an outer protective plastic coating to bolts has proven to be an effective means of protecting the inner steel bar from corrosion. However, these support systems tend to be susceptible to coating damage, and require post cement grouting to provide full encapsulation. In comparison to a standard bolt/resin system, they can be slow to install and expensive.These systems have also been shown to reduce overall load transfer performance of the bolting system. In order to provide a higher level of corrosion protection whilst maintaining current installation practices and bolting cycle times, Minova has developed the Enduro^(TM)steel ground support range. The Enduro^(TM) range consists of standard Minova steel ground support components which have been treated with a unique coating process. The Enduro^(TM)coating has been tested in the harshest of conditions, in laboratory controlled conditions and in underground trials. It has been proven to effectively resist or completely eliminate the formation of corrosion, even in the most aggressive environments. This paper explains the process and provides the details of the laboratory and underground corrosion performance testing carried out on Enduro^(TM)ground support products.展开更多
基金The support of the US Office of Naval Research Global under contract No.N62909-20-1-2080.
文摘Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficiency and accuracy of the sea spray induced air-sea heat and salt fluxes.This is because the microphysical process of sea spray evolution in the air is of extreme complexity.In this study,we iteratively calculated the sea spray induced air-sea heat and salt fluxes at various weather condition.To do so,we implemented one novel wave-steepness-dependent sea spray model into a bulk air-sea fluxes algorithm and utilized other sea spray models as comparisons.Based on the improved wave-dependent bulk turbulent algorithm,we observed that despite the negative contribution of sea spray to the sensible heat fluxes,the sea spray positively contributes to the air-sea latent heat fluxes,leading to an overall increase in the total air-sea heat fluxes.The additional heat fluxes caused by sea spray may be the missing critical process that can clarify the discrepancies observed between measured and modelled Tropical Cyclone’s development and intensification.In addition to heat fluxes,we observed that sea spray has significant impacts on the air-sea salt fluxes.As the sea salt particles are one of the main sources of the atmosphere aerosol,our results imply that sea spray could impact global and regional climate.Thus,given the significance of sea spray on the air-sea boundary layer,sea spray effects need to be considered in studies of air-sea interaction,dynamics of atmosphere and ocean.
基金the National Natural Science Foundation of China (No. 50171026)the Natu-ral Science Foundation of Heilongjiang Province, China (No. E2007-36).
文摘Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.
基金Foundation item:National Natural Science Foundation of China(No.51204020)National Basic Research Program of China(No.2013CB632202,No.2013CB632205).
文摘The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scanning electron microscope(SEM),X-ray Diffraction(XRD)and potentiodynamic polarization tests.The corrosion degree of Mg–7Gd–5Y–1Nd–0.5Zr alloys in Ca(NO_(3))_(2)salt spray was very shallow by corrosion morphology and the corrosion route was extended along the surface in texture-like shape,while the alloy in NaCl and(NH4)_(2)SO_(4)salt spray were major local corrosion and there were serious corrosion pits on the surface.The weight loss rates in(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray was respectively 0.4147,0.1618 and 0.0725 mg/(cm2 d−1).The results of residual mechanical properties indicated that the corrosion order in salts spray of Mg–7Gd–5Y–1Nd–0.5Zr alloys is NH4SO4>NaCl>Ca(NO_(3))_(2),which was consistent with the results of potentiodynamic polarization tests.The type of the salts will play a vital role in the initiation of the corrosion of EW75 alloy when they are used in the atmosphere environments.Inorganic salts with the smaller PH value after dissolution will have a stronger impact on the corrosion of EW75 magnesium alloys.
基金Funded by the Foundation for Applied Basic Research of Changzhou City, China (CJ20110019)the Innovation Program of Graduated Student of Jiangsu Province(XM10-243)
文摘The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observed with SEM and EDS, respectively, and the effects of salt spray on micro-structures of VC coating were analyzed. Moreover, the invalidation mechanism of VC coating after salt spray and its effect on substrate material were discussed. The experimental results shown that the uniformity and integrity of VC coating surface are destroyed by salt spray for 120 h, a large number of the pits are produced on the coating surface, and the coating falls off, which speeds corrosion breakage of its substrate; the oxidated film on its surface becomes rougher, broken and discontinuous, and falls off easily, which reduce the ability of resistance salt spray; the failure modes of VC coating after salt spray are expressed with falling off of oxidated film, stress concentration and pore effect and so on, the corrosion breakage of oxidated film is the corrosion result of deoxidization corrosion from oxygen and HCl produced by NaCl and vapor.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
基金Funded by the High-Tech Research and Development Program of China(No.2012AA09A203)the Fundmental Research Funds for the Central Universities(No.15CX06061A)the Postgraduate Innovation Project of China University of Petroleum(East China)(No.YCXJ2016059)
文摘The objective of the present work was to determine the influence of the neutral salt spray corrosion on the wear resistance of HVOF sprayed NiCr-Cr3C2 coating with intermediate layer. Ni-Zn-Al2O3 coatings as interlayers were prepared by low pressure cold spray(LPCS) between NiCr-Cr3C2 cermet coatings to form a sandwich structure to enhance the corrosion resistance properties. The tribological properties were examined using the UMT-3 fricition and wear tester by line-contact reciprocating sliding under dry and salt spray one week corrosion. The morphology, element distribution, and phase compositions of the coating and worn sufaces were analyzed by using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction respectively. The corrosion behavior of the coating was studied by the open-circuit potential, the electrochemical impedance spectroscopy, potentiodynamic polarization, and salt spray corrosion methods. It is found that the sandwich structured coating has better corrosion resistance than the single layer coating. The results show that under dry wear conditions, the wear mechanism is abrasive and adhesive wear, whereas under salt spray corrosion conditions it becomes corrosion wear. The friction coefficient of the sandwich structured coating after salt spray corrosion is slightly lower than the dry friction coefficient, but the weight of the wear loss is lower than that under dry condition.
基金the financial support provided by National Natural Science Foundation of China(Grant Nos.52178216,51868044).
文摘This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gelling material,a BF/MOC composite material was prepared.Firstly,the effect of BF addition content on the basic mechanical properties of the composites was investigated.Then,through the salt spray corrosion test,the durability damage deterioration evaluation analysis was carried out from both macroscopic and microscopic aspects using mass change,relative dynamic modulus of elasticity(RDME)change,SEM analysis and FT-IR analysis.Finally,a GM(1,1)-Markov model was established to predict the durability life of composite materials by using durability evaluation indicators.The results show that:when the BF content is 0.10%(by volumetric content),the composites have the best mechanical properties and resistance to salt spray corrosion.However,when the volume of BF content exceeds 0.10%,a large number of magnesium salt crystallization products are observed from the microscopic point of view,and the corrosion of the main strength phase of MOC is more serious.The prediction results of the GM(1,1)-Markov model are highly identical with the raw data.In addition,using the change of RDME as a predictor,RDME is more sensitive to environmental factor compared to the change of mass.Predictions using the change of RDME as a threshold indicate that MOC-BF0.10 has the longest durability life,which is 836 days.The model is important to promote the application of MOC composites in the salt lake region and to promote the healthy development of green building materials.
文摘The corrosion fatigue propagation behaviour of high strength low alloy Cr-Ni and Si-Mn steels has been investigated in 3.5 %NaCl solution spryly at the frequencies of 0.1 and 5.5 Hz. It was shown that the fatigue crack initiation resistances of the two steels are significantly re- duced in salt spray;the fatigue crack growth rates of steels increase with the decrease of fre- quency and are much higher in salt spray than in air within low ΔK range.A critical stress in- tensity factor was observed for each steel and the crack growth stoppage will occur if the ΔK values are lower than it.It was found that the active dissolution makes great contribution to the fatigue crack growth within low ΔK range.
文摘Marine Cloud Brightening (MCB) by effervescent spray atomization of mixed sea water brine with air is a candidate for solar radiation management to compensate for global warming. We discovered that the flow from mixing tee nozzle described earlier had occasional unstable slug flow. A new design that adding rotational swirl to the salt brine as it is mixed into the air stabilized the nozzle flow and no longer showed slug flow in spray pictures. Flow equations were developed for the relatively low speed of sound of a choked flow mixed brine and air nozzle. Experimental mixed flow measurements with 300b pressure and a 200 μm diameter nozzle and calculations using perfect gas, and isotropic processes equations compared well with the chocked flow equations. Analysis in EXCEL of particle sizers measurements from both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) showed production of many nanometer sized particles estimated as usable for MCB. A small number of micron sized particles were also always present but with about 90% of the sprayed mass. This is a first report with good data over the complete size range. The micron sized particles measured were similar to the measurements of earlier reports which reported no nanometer sized particles. We hypothesize that many nano-particles are always produced by liquid-air effervescent sprays, but earlier, were not observed because SMPS instruments were not available. The presence of the large mass percentage of large particles in the spray may cause problems by evaporative cooling preventing the rise of the MCB particles. We suggest future systems design with an impactor filter to remove the large particles. Calculations combining increased brine concentration, lower pressure, and larger nozzle area showed that significant reductions in required power and number of nozzles could be realized. An EXCEL model is developed to calculate flow from experimental analysis equations and compare with mixed choked flow equations. Solving with the model predicted the power required and the number of nozzles required to produce 10<sup>15</sup> particles/s. The model showed that increasing brine concentration strongly lowered total power. Lowering pressure decreased power and increased number of nozzles. Increasing nozzle area lowered the number of nozzles. This model predicted that, at 300b pressure and 200μm diameter nozzle as the experiment but using an increased brine concentration of 0.1 instead of 0.032 would require only 115 nozzles instead of 358 and power of 146 kw instead of 493 kw. Combining increased brine concentration, lower pressure, and larger nozzle area, the model predicted that with a 1 mm diameter nozzle at 30b pressure and salt concentration of 0.2, the nozzle count and power required would drop to only 24 nozzles and power of 28 kw. Whether extending the model to these conditions is valid is not known but suggests further development should be investigated. Filtering out and reusing the 90% or greater large particles mass sprayed combined with the lower power advantage of higher brine concentration is suggested for future systems.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)
文摘The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
基金supported by the National Natural Science Foundation of China (41503102, 41401567, 41573138)the China Postdoctoral Science Foundation (2015M572568)~~
文摘Hollow Bi2WO6 microspheres are successfully synthesized by a facile ultrasonic spray pyrolysis(USP) method using NaCl as a salt template.The as-prepared hollow microspheres assembled as nanoplates with dimensions of approximately 41-148 nm and are dispersed with non-uniform pores on the template surface.By swapping the salt template with KC1 or Na2SO4,different morphologies of Bi2WO6 are obtained.The experimental results demonstrate that NaCl plays a key role on the formation of Bi2WO6 with hollow structures.The specific growth mechanism of hollow microspheres was studied in detail.The Bi2WO6 hollow microspheres exhibit an excellent photocatalytic efficiency for NO removal under solar light irradiation,which is 1.73 times higher than for the Bi2WO6 obtained in the absence of any salt template.This enhancement can be ascribed to the simultaneous improvement on the surface area and visible light-harvesting ability from the hollow structures.Electron spin resonance(ESR) results suggest that both radicals of ·OH and ·O2^- are involved in the photocatalytic process over the BWO-NaCl sample.The production of ·O2^- radicals offers better durability for NO removal.
基金supported by the Joint Funds of the Zhejang Provincial Natural Science Foundationof China(LTY22C030003)the"Pioneer"and"Leading Goose"R&D Program of Zhejiang(2022C02019)+1 种基金the National Natural ScienceFoundationofChina(32071644,31400366,32271742 and 42330503)the Natural Science Foundation of ZhejiangProvince(LY20C030003).
文摘Salt spray is a natural disturbance in coastal region.Arbuscular mycorrhizal fungi(AMF)are recognized as bio-ameliorators of soil salinity in plants.However,the mechanism through which AMF protects Cinnamomum camphora against aerial salinity remains unclear.To address this knowledge gap,plants were subjected to four fungal regimes,namely sterilized fungal inoculum,Glomus tortuosum,Funneliformis mosseae,or a combination of these two fungi,and exposed to three sprayed-salt regimes(0,7,or 14 mg NaCl cm−2 d−1)in a greenhouse.Salt spray significantly decreased photosynthetic capabilities,total dry weight,and salinity tolerance of non-mycorrhizal plants.Mycorrhizal inoculation,particularly a combination of G.tortuosum and F.mosseae,evidently mitigated the detrimental effects induced by salt spray.Meanwhile,mycorrhiza-mediated protection depended on the intensity of sprayed salt and the identity of fungal taxa.Furthermore,the enhanced resistance of mycorrhizal C.camphora seedlings to aerial salinity was mainly owing to increased leaf thickness and photosynthetic capabilities.These findings imply that inoculation with combined fungi could be an optimal strategy for cultivating C.camphora plants in coastal regions.The results gained hold the potential to offer both theoretical and practical guidance for the managers of coastal ecosystems in soil restoration and conservation.
基金Fundamental Research Funds for Central Universities Project (No. 1CX05021A)Shandong Provincial Key R&D Plan Project (No. 2GHY15108)Shandong Postdoctoral Innovation Project and Qingdao Postdoctoral Applied Research Project。
文摘The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by using low-pressure cold spray (LPCS) method to improve the salt fog corrosion resistance properties of the supersonic plasma spray (SPS) NiCr-Cr_(3)C_(2) coatings.The friction and wear performance for the double-layer and single-layer NiCr-Cr_(3)C_(2) coatings were carried out by line-contact reciprocating sliding,respectively.Combined with the coating surface analysis techniques,the effect of the salt fog corrosion on the tribological properties of the double-layer coatings was studied.The results showed that the double-layer coatings exhibited better wear resistance than that of the single-layer coatings,due to the better corrosion resistance of the intermediate layer;the wear mass losses of the double-layer coatings was reduced by 70%than that of the single layer coatings and the wear mechanism of coatings after salt fog corrosion conditions is mainly corrosion wear.
基金The project was supported by the National Natural Science Foundation of China(No.51574123)the Scientific Research Project of Hunan Province Office of Education(No.18A185),which is gratefully acknowledged.
文摘Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to improve of the combination of droplets and coking coal dust.Based on monomer optimization and compounding analysis,two surfactant monomers,fatty alcohol ether sodium sulfate(AES)and sodium dodecyl benzene sulfonate(SDBS)were selected as the surfactant components of the dust suppressant.The surfactant monomers were combined with four inorganic salts and the reverse osmosis moisture absorption of each solution was determined.By combining the reverse osmosis moisture absorption values with the water retention experimental results,CaCl_(2)was identified as the optimal inorganic salt additive for the dust suppressant.Finally,the optimal concentration of each component was obtained using orthogonal experimental design i.e.,AES(0.03%),SDBS(0.05%),and CaCl_(2)(0.4%).The dust suppressant solution formulated using this method had a high moisture absorption capacity and excellent performance.
文摘WC based cermet coatings have been considered as alternative replacements to the more traditional hard chrome plating for improved surface properties of aircraft landing gear. While these coatings are used in engineering applications requiring superior hardness and improved wear resistance, little is known about the corrosion resistance. In this study, three WC based composite coatings were deposited onto ferritic stainless steel substrates using high velocity oxy fuel (HVOF) technology. Salt spray testing and potentiodynamic scanning studies in a saline environment were conducted on the coatings. Characterisation of the coating structure, composition and morphology, was carried out, prior to and after corrosion testing, using optical microscopy, scanning electron microscopy and EDX elemental analysis. The results showed that poor corrosion performance was exhibited by all three coatings. This was attributed to the high levels of porosity and the presence of micro-cracks within the coatings, resulting in attack of the substrate directly by the saline environment and possible galvanic coupling effects between the substrate and the coating. Dissolution and / or erosion of specific phases within the coating, resulting in the formation of micro-channels and increased number / size of voids may have accelerated corrosion of the system.
文摘The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.
文摘The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.
基金co-supported by the China Postdoctoral Science Foundation(No.2019M653929)the Green Innovation Science+1 种基金Technology Plan of CollegesUniversities in Shandong Province,China(No.2020KJA014).
文摘The initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments(pH=3.5)are studied by Scanning Electron Microscope(SEM),optical microscope,Fourier Transform Infrared Spectroscopy(FT-IR),X-Ray Diffraction(XRD),potentiodynamic polarization,Electrochemical Impedance Spectroscopy(EIS),and Scanning Kelvin Probe(SKP).The results show that pitting corrosion occurs at the initial corrosion stage,and the potential difference between the second phase particles is the main cause of pitting.Pitting pits on different locations gradually expand and coalesce with the proceeding of corrosion.The main components of corrosion products are Al_(2)O_(3),Al(OH)_(3),and AlCl_(3),and the generation rate of the corrosion product layer under the salt spray environment is larger than that under acid immersion environment.Under both environments,the Volta potential distribution first disperses and then concentrates,while the charge transfer resistance first decreases and then increases with the corrosion time.The Volta potential gradually shifts in a positive direction,indicating that corrosion products have an inhibitory effect on corrosion.After the same corrosion time,the corrosion product layer resistance and the expectation of the Volta potential of the salt spray sample are higher than those of the immersion sample.Comparatively,the corrosion current density for the salt spray sample is significantly lower than the immersion sample,which indicates that the thicker the corrosion product layer,the stronger the inhibition of corrosion reaction.
基金The work was financially supported by the Open Laboratory Funds ofTsinghua University.
文摘The corrosion behavior of ZL104 alloy at different states (as-cast and heattreatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated afterrefinement and modification has the least corrosive resistance compared with the sample bearingas-cast structure at the beginning of the corrosion. As the corrosion process continued, however,the trend reversed itself. After 44 h continuous corrosion, the corrosive rates of all samples tendto be stable. After experiments, the sample bearing as-cast structure had the most corrosiveproducts on the surface whereas the sample being refined and modified had the least products. TheFourier transformation infrared spectroscopy (FTIR) analyses of the corrosion products show thatthese products are composed of hydroxyl-containing substances.
文摘The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground support system, significant campaigns of rehabilitation are often required in corrosion affected areas which also expose the workers to hazardous conditions. The most common corrosion protection for steel ground support utilises sacrificial systems such as galvanising. Galvanising has previously been proven to be susceptible to some corrosion processes. Stainless steel is the most effective in resistance to corrosion, but can be cost prohibitive, and its mechanical properties often make it unsuited to use in ground support components. Providing an outer protective plastic coating to bolts has proven to be an effective means of protecting the inner steel bar from corrosion. However, these support systems tend to be susceptible to coating damage, and require post cement grouting to provide full encapsulation. In comparison to a standard bolt/resin system, they can be slow to install and expensive.These systems have also been shown to reduce overall load transfer performance of the bolting system. In order to provide a higher level of corrosion protection whilst maintaining current installation practices and bolting cycle times, Minova has developed the Enduro^(TM)steel ground support range. The Enduro^(TM) range consists of standard Minova steel ground support components which have been treated with a unique coating process. The Enduro^(TM)coating has been tested in the harshest of conditions, in laboratory controlled conditions and in underground trials. It has been proven to effectively resist or completely eliminate the formation of corrosion, even in the most aggressive environments. This paper explains the process and provides the details of the laboratory and underground corrosion performance testing carried out on Enduro^(TM)ground support products.