Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments...Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.展开更多
With many types of salt structures developed in the Lower Cretaceous Aptian Formation,the passive continental marginal basins in the middle segment of the south Atlantic are hot areas of deep-water petroleum explorati...With many types of salt structures developed in the Lower Cretaceous Aptian Formation,the passive continental marginal basins in the middle segment of the south Atlantic are hot areas of deep-water petroleum exploration.Based on analysis of differential deformations of salt structures,the influences of the inclination of subsalt slope,subsalt topographic reliefs and basement uplifting on the formation of salt structures were analyzed by physical modeling in this work.The experimental results show that the subsalt slopes in the middle West Africa basins are steeper,so the salt rock is likely to rapidly flow towards the ocean to form larger and fewer salt diapirs.In the Santos and Campos basins,the basement uplifts outside the basins are far from the provenances,which is conducive to the intrusion and accumulation of salt rock on the top of the basement uplifts.In contrast,in the middle West Africa,the basement uplifts are close to the basin margin,the residual salt layers above them are thin,and small triangular salt structures develop on both sides of the uplifts.Moreover,the uplifting of the African plate is also conducive to the full development of salt diapirs in the middle West Africa and results in large-scale thrust faults and folds in the front compressional zone.展开更多
Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to ...Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
We simulated the stress changes around a salt basin using a static salt structure model under compressive stress background to investigate the stress perturbation caused by different salt body shapes and amplitudes. W...We simulated the stress changes around a salt basin using a static salt structure model under compressive stress background to investigate the stress perturbation caused by different salt body shapes and amplitudes. We designed a two-layer salt model with three bulges and sags using finite element methods to calculate the stress perturbation around the salt. The results show that salt shape is closely related to the stress perturbation in the sediments around the salt, and the fluctuations of the bulge and sag(smooth or steep) can also affect the stress perturbation magnitude. Extrusion horizontal stress, normal stress, and out-of-plane stress on the plane would occur near the salt uplift in a compressive tectonic stress environment. In contrast, tensile horizontal stress, out-of-plane stress, and vertical stress would occur near the salt sag. In addition, smoother bulges are associated with smaller produced stress perturbations, and steeper sags are associated with a greater reduction of stress perturbation in the sediment. The stress of a salt structure in western Kelasu of the Kuqa depression was simulated and the applicability of previous conclusions regarding this structure was verified. These conclusions provide scientific basis for the prediction of stress perturbations around salt basin systems.展开更多
The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bri...The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bridging and complexing in the system are discussed based on the pair correlation functions and bond angle distributions.The results simulated show that the F^- ions around a Ca^(2+)ion do not form tetrahedron coordination,so some of small complexing clusters such as CaF_4^(2-)are hardly found.A possible structure of F^- ions around Ca^(2+)ions is that three Ca^(2+)ions constitute an equilateral triangle through three Ca-F-Ca bridges and two F^- ions are located over and under the center of the right triangle,respectively.Meanwhile,on the outside of the triangle,every Ca^(2+)ion has other two F^- ions as its neighbors.展开更多
The title compound was prepared and characterized.Its crystal Structure was determined by X—ray diffraction analysis,and consists of segregated cation and an- ion stacks in the perpendicular directions.Crystal data:m...The title compound was prepared and characterized.Its crystal Structure was determined by X—ray diffraction analysis,and consists of segregated cation and an- ion stacks in the perpendicular directions.Crystal data:monoclinic,P2_1/c,Mr=765.21, a=7.882(2)b=15.526(4),c=13.736(2)β=99.87(2)~0,V=1656.0(6)~3,Ac =1.53g/cm^3,Z=2,F(000)=780,R=0.040 and R_w=0.056.展开更多
Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) temp...A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices.展开更多
文摘Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.
基金Supported by the China National Science and Technology Major Project(2016ZX05033,2016ZX05026-007)National Natural Science Foundation of China(42072149)。
文摘With many types of salt structures developed in the Lower Cretaceous Aptian Formation,the passive continental marginal basins in the middle segment of the south Atlantic are hot areas of deep-water petroleum exploration.Based on analysis of differential deformations of salt structures,the influences of the inclination of subsalt slope,subsalt topographic reliefs and basement uplifting on the formation of salt structures were analyzed by physical modeling in this work.The experimental results show that the subsalt slopes in the middle West Africa basins are steeper,so the salt rock is likely to rapidly flow towards the ocean to form larger and fewer salt diapirs.In the Santos and Campos basins,the basement uplifts outside the basins are far from the provenances,which is conducive to the intrusion and accumulation of salt rock on the top of the basement uplifts.In contrast,in the middle West Africa,the basement uplifts are close to the basin margin,the residual salt layers above them are thin,and small triangular salt structures develop on both sides of the uplifts.Moreover,the uplifting of the African plate is also conducive to the full development of salt diapirs in the middle West Africa and results in large-scale thrust faults and folds in the front compressional zone.
基金Project(41362008)supported by the National Natural Science Foundation of China。
文摘Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin.
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金Supported by the China National Research and Development Project(2018YFC0603500,2016YFC0600310)
文摘We simulated the stress changes around a salt basin using a static salt structure model under compressive stress background to investigate the stress perturbation caused by different salt body shapes and amplitudes. We designed a two-layer salt model with three bulges and sags using finite element methods to calculate the stress perturbation around the salt. The results show that salt shape is closely related to the stress perturbation in the sediments around the salt, and the fluctuations of the bulge and sag(smooth or steep) can also affect the stress perturbation magnitude. Extrusion horizontal stress, normal stress, and out-of-plane stress on the plane would occur near the salt uplift in a compressive tectonic stress environment. In contrast, tensile horizontal stress, out-of-plane stress, and vertical stress would occur near the salt sag. In addition, smoother bulges are associated with smaller produced stress perturbations, and steeper sags are associated with a greater reduction of stress perturbation in the sediment. The stress of a salt structure in western Kelasu of the Kuqa depression was simulated and the applicability of previous conclusions regarding this structure was verified. These conclusions provide scientific basis for the prediction of stress perturbations around salt basin systems.
文摘The NaF-CaF_2 system has been studied by molecular dynamics simulation.The pair correlation functions between cations and anions and the bond angle distributions of cation and anion triplets have been obtained.The bridging and complexing in the system are discussed based on the pair correlation functions and bond angle distributions.The results simulated show that the F^- ions around a Ca^(2+)ion do not form tetrahedron coordination,so some of small complexing clusters such as CaF_4^(2-)are hardly found.A possible structure of F^- ions around Ca^(2+)ions is that three Ca^(2+)ions constitute an equilateral triangle through three Ca-F-Ca bridges and two F^- ions are located over and under the center of the right triangle,respectively.Meanwhile,on the outside of the triangle,every Ca^(2+)ion has other two F^- ions as its neighbors.
文摘The title compound was prepared and characterized.Its crystal Structure was determined by X—ray diffraction analysis,and consists of segregated cation and an- ion stacks in the perpendicular directions.Crystal data:monoclinic,P2_1/c,Mr=765.21, a=7.882(2)b=15.526(4),c=13.736(2)β=99.87(2)~0,V=1656.0(6)~3,Ac =1.53g/cm^3,Z=2,F(000)=780,R=0.040 and R_w=0.056.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金financially supported by the Ministry of Science and Technology of China (Nos.2016YFA0200803 and 2016YFB0402004)the National Natural Science Foundation of China (Nos.51673207 and 51373183)
文摘A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices.