期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Method of Soil Salinization Information Extraction with SVM Classification Based on ICA and Texture Features 被引量:3
1
作者 ZHANG Fei TASHPOLAT Tiyip +5 位作者 KUNG Hsiang-te DING Jian-li MAMAT.Sawut VERNER Johnson HAN Gui-hong GUI Dong-wei 《Agricultural Science & Technology》 CAS 2011年第7期1046-1049,1074,共5页
Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This stud... Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM +Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization. 展开更多
关键词 Independent component analysis(ICA) Texture features Support vector machine(SVM) Soil salinizaiton
下载PDF
Mixed KPCA结合纹理特征的SVM盐碱土信息提取 被引量:2
2
作者 崔林林 罗毅 +1 位作者 包安明 李春轩 《计算机工程与应用》 CSCD 2012年第27期211-216,共6页
核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于... 核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于该混合核函数的KPCA进行特征提取,将其光谱特征波段和纹理特征相结合用于盐碱土的SVM分类,将分类结果与其他SVM分类进行比较,结果表明:该方法优于其他SVM方法,能有效提取玛纳斯河流域绿洲区的盐碱土专题信息,分类精度是89.000%,kappa系数是0.876。 展开更多
关键词 混合核主成分分析 纹理特征分析 支持向量机 盐碱土
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部