期刊文献+
共找到224,592篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis and Characterization of the GABA Transaminase and Succinate Semialdehyde Dehydrogenase Genes in the Microalga Isochrysis zhanjiangensis in Response to Abiotic Stresses
1
作者 TIAN Jiaojiao ZHANG Lin +7 位作者 LU Xinyue YE Lingzhi WU Yuanyuan CHEN Deshui CAO Jiayi JIANG Jiaxin XU Jilin YAN Xiaojun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期775-785,共11页
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh... Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses. 展开更多
关键词 abiotic stress GABA heterologous expression Isochrysis zhanjiangensis TRANSCRIPTION
下载PDF
Stresses in the Scapular Fossa Do Not Exceed the Yield Stress When Elevated up to 135 Degrees of Abduction after Reverse Shoulder Arthroplasty
2
作者 Rina Sakai Tomonori Kenmoku +3 位作者 Ryo Tazawa Kazuhiro Yoshida Tomomi Mizuhashi Masanobu Ujihira 《Journal of Biomedical Science and Engineering》 2024年第2期35-40,共6页
Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate fail... Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate failure, 38% of which are due to instability. The primary stability the base plate ensures is a crucial factor and, thus, is the subject of much debate in clinical studies and biomechanical research. This study is aimed to provide data that will contribute to the base plate’s pri-mary stability and glenoid longevity by clarifying the stresses at the scapular fossa and base plate interface associated with elevation after RSA. A 3D finite element model was created from the DICOM data for the scapulohumeral joint and SMR shoulder system. For loading conditions, 30 N was applied for each posi-tion with abduction angles of 0, 45, 90, and 135 degrees. A three-dimensional fi-nite element analysis was performed using the static implicit method with LS-DYNA. The von Mises stresses in the scapular fossa were found not to exceed the yield stress on the bone even after elevation to an abduction angle of 135 de-grees after RSA. It is rough to uniformly compare the yield stress and the von Mises stress, but it was inferred that the possibility of fracture is low unless a large external force is applied. A maximum von Mises stress showed 0 degrees of abduction, suggesting that the lowered position is in a more severe condition than the elevated position. If better improvement is desired, it may be necessary to devise ways to reduce the stress on the upper screw. . 展开更多
关键词 Reverse Shoulder Arthroplasty Finite Element Analysis Yield stress GLENOID
下载PDF
Effect of degree of saturation on stresses and pore water pressure in the subgrade layer caused by railway track loading
3
作者 Mohammed Y.Fattah Qutaiba G.Majeed Hassan H.Joni 《Railway Sciences》 2024年第4期413-436,共24页
Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of ... Purpose-The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle(vertical and lateral stresses).The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation,load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.Design/methodology/approach-Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways,with an iron box measuring 1.5×1.031.0 m.Inside the box,a 0.5 m thick layer of clay soil representing the base layer was built.Above it is a 0.2 m thick ballast layer made of crushed stone,and on top of that is a 0.8 m long rail line supported by three 0.9 m(0.1×0.1 m)slipper beams.The subgrade layer has been built at the following various saturation levels:100,80,70 and 60%.Experiments were conducted with various frequencies of 1,2 and 4 Hz with load amplitudes of 15,25 and 35 kN.Findings-The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%,the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well.On average,this ratio changed from approximately 0.75 to approximately 0.65.Originality/value-The study discovered that as the test proceeded and the number of cycles increased,the value of negative water pressure(matric suction)in the case of unsaturated subgrade soils declined.The frequency of loads had no bearing on the ratio of decline in matric suction values,which was greater under a larger load amplitude than a lower one.As the test progressed(as the number of cycles increased),the matric suction dropped.For larger load amplitudes,there is a greater shift in matric suction.The change in matric suction is greater at higher saturation levels than it is at lower saturation levels.Furthermore,it is seen that the load frequency value has no bearing on how the matric suction changes.For all load frequencies and subgrade layer saturation levels,the track panel settlement rises with the load amplitude.Higher load frequency and saturation levels have a greater impact. 展开更多
关键词 Subgrade clay UNSATURATED TRACK Matric suction stresses
下载PDF
The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon
4
作者 Milton Garcia Costa Renato de Mello Prado +1 位作者 Luiz Fabiano Palaretti Jonas Pereira de Souza Júnior 《The Crop Journal》 SCIE CSCD 2024年第2期340-353,共14页
In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial e... In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation. 展开更多
关键词 Nutritional stoichiometry Elemental stoichiometry Beneficial element Environmental stresses Nutritional efficiency Carbon use efficiency Agricultural sustainability
下载PDF
Boulder-induced form roughness and skin shear stresses in a gravel-bed stream
5
作者 DAS Ratul DATTA Akash 《Journal of Mountain Science》 SCIE CSCD 2024年第1期346-360,共15页
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac... Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface. 展开更多
关键词 Array of boulders Near wake flow zones Velocity distributions Skin roughness Form induced shear stresses
下载PDF
Eco-physiological Characteristics of Alfalfa Seedlings in Response to Various Mixed Salt-alkaline Stresses 被引量:30
6
作者 Yong-Lin Peng Zhan-Wu Gao Ying Gao Guo-Fang Liu Lian-Xi Sheng De-Li Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第1期29-39,共11页
Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCI, Na2SO4, NaHCO3 and Na2CO3) and... Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCI, Na2SO4, NaHCO3 and Na2CO3) and 30 salt-alkaline combinations (salinity 24-120 mmollL and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (P 〈 0.001). The interactions between salinity and alkalinity stresses led to changes in the root activity along the salinity gradient (P 〈 0.001). The effects of alkalinity on seedling survival rate were more significant than those of salinity, and the seedlings demonstrated some physiological responses (leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants. 展开更多
关键词 alfalfa (Medicago sativa) ALKALINITY mixed salt-alkaline stress salinity seedling.
原文传递
Genome-wide identification of TPS genes in sesame and analysis of their expression in response to abiotic stresses 被引量:1
7
作者 Wangyi Zhou Chen Sheng +4 位作者 Senouwa Segla Koffi Dossou Zhijian Wang Shengnan Song Jun You Linhai Wang 《Oil Crop Science》 CSCD 2023年第2期81-88,共8页
Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence th... Trehalose and its precursor,trehalose-6-phosphate,play critical roles in plant metabolism and response to abiotic stresses.Trehalose-6-phosphate synthase(TPS)is a key enzyme in the trehalose synthesis pathway.Hence this study identified TPS genes in sesame(SiTPSs)and examined their expression patterns under various abiotic stresses.Totally,ten SiTPSs were identified and comprehensively characterized.SiTPSs were found to be unevenly distributed on five out of 13 sesame chromosomes and were predicted to be localized in chloroplasts and vacuoles of cells.Phylogenetic analysis classified SiTPS proteins into two groups(I and II),which was supported by gene structure and conserved motif analyses.Analysis of cis-acting elements in promoter regions of SiTPSs revealed that they might primarily involve developmental and environmental responses.SiTPSs exhibited different expression patterns in different tissues and under different abiotic stresses.Most group II SiTPS genes(SiTPS4-SiTPS10)were strongly induced by drought,salt,waterlogging,and osmotic stress.Particularly,SiTPS10 was the most significantly up-regulated under various abiotic stresses,indicating it is a candidate gene for improving sesame tolerance to multiple abiotic stresses.Our results provide insight into the TPS gene family in sesame and fundamental resources for genomics studies towards dissecting SiTPS genes’functions. 展开更多
关键词 SESAME TPS Gene family Abiotic stress Gene expression
下载PDF
Effects of Salt-Alkaline Stress on Carbohydrate Metabolism in Rice Seedlings 被引量:1
8
作者 Xiwen Shao Dongsheng Gai +2 位作者 Dapeng Gao Yanqiu Geng Liying Guo 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第4期745-759,共15页
The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress.Two relatively salt-alkaline tolerant(Changbai 9)and sensitive(Jinongda 138)rice cultivars,grown hyd... The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress.Two relatively salt-alkaline tolerant(Changbai 9)and sensitive(Jinongda 138)rice cultivars,grown hydroponically,were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution.The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated.The results showed that the contents of sucrose,fructose,and glucose in the leaves and roots increased under salt-alkaline stress.Starch content increased in the leaves but decreased in the roots under salt-alkaline stress.The activities of sucrose-phosphate synthase,sucrose synthase,amylase,and ADP-glucose pyrophosphorylase increased whereas the activities of neutral invertase and acid invertase decreased in the leaves under salt-alkaline stress.The activities of sucrose-phosphate synthase,sucrose synthase,amylase,neutral invertase,and acid invertase increased in the roots under salt-alkaline stress.In conclusion,salt-alkaline stress caused the accumulation of photosynthetic assimilates in the leaves and decreased assimilation export to the roots. 展开更多
关键词 RICE salt-alkaline stress starch metabolism sucrose metabolism
下载PDF
Effects of intermediate stress on deep rock strainbursts under true triaxial stresses 被引量:1
9
作者 Lihua Hu Liyuan Yu +2 位作者 Minghe Ju Xiaozhao Li Chun’an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期659-682,共24页
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si... The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity. 展开更多
关键词 Strainbursts Intermediate stress Distinct element method(DEM) Structural failure True triaxial Strength criterion
下载PDF
Ferroptosis and endoplasmic reticulum stress in ischemic stroke 被引量:4
10
作者 Yina Li Mingyang Li +4 位作者 Shi Feng Qingxue Xu Xu Zhang Xiaoxing Xiong Lijuan Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期611-618,共8页
Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The prim... Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke. 展开更多
关键词 cell death endoplasmic reticulum stress ferroptosis ischemic stroke lipid peroxidation
下载PDF
Adaptive strategy of Nitraria sibirica to transient salt,alkali and osmotic stresses via the alteration of Na+/K+fluxes around root tips
11
作者 Xindi Mei Ting Dai Yingbai Shen 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期425-432,共8页
Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as ... Nitraria sibirica Pall.is an important shrub with a strong salt-alkali tolerance,but the mechanism underlying this tolerance remains obscure.In this study,N.sibirica,with salt-sensitive Vigna radiata(Linn.)Wilczek as the control,was subjected to transient salt stress(100 mM NaCl),alkali stress(50 mM Na_(2)CO_(3)),and osmotic stress(175 mM mannitol).The ionic fluxes of Na^(+)and K^(+)in the root apical region were measured.Results show that,under salt and alkali stress,N.sibirica roots exhibited higher capacities to limit Na+influx and reduce K+efflux,thereby resulting in lower Na^(+)/K^(+)ratios compared with V.radiata roots.Alkali stress induced stronger Na^(+)influx and K+efflux in the root salt stress treatment;Na^(+)influx was mainly observed in the root cap,while K^(+)efflux was mainly observed in the elongation zone.While under osmotic stress,N.sibirica roots showed stronger Na+efflux and weaker K+efflux than V.radiata roots.Na+efflux was mainly observed in the root elongation zone,while K+efflux was in the root cap.These results reveal the ionic strategy of N.sibirica in response to transient salt,alkali,and osmotic stresses through the regulation of Na+/K+flux homeostasis. 展开更多
关键词 Nirtaria sibirica Na^(+)/K^(+)fl uxes Na^(+)/K^(+)ratios Salt stress Alkali stress Osmotic stress
下载PDF
Analysis of stresses at the center of transversely isotropic Brazilian disk
12
作者 Ali Aminzadeh Florian Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期618-629,共12页
This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius ... This article presents the stresses at the center of a Brazilian disk(BD)for transversely isotropic rocks.It is shown that the solution of stresses at the center of an anisotropic disk is a function of the disk radius and the magnitude of applied load,as well as the material orientation with respect to the load axis and two dimensionless ratios with specific physical meanings and limitations.These two dimensionless parameters are the ratios of Young’s modulus and apparent shear modulus,although the ratio of apparent shear modulus will be eliminated if the Saint-Venant assumption is considered.Considerable finite element simulations are carried out to find the stresses at the disk center concerning the material orientation and the two dimensionless parameters.Also,an approximate formula obtained from analytical results,previously proposed in the literature for solving the tensile and compressive stresses at the disk center,is re-written and simplified based on these new definitions.The results of the approximate formula fitted to the analytical results are compared to those obtained from numerical solutions,suggesting a good agreement between the numerical and analytical methods.An approximate equation for the shear stress at the disk center is also formulated based on the numerical results.Finally,the influence of the assumptions for simplification of the proposed formula for the tensile,compressive,and shear stresses at the disk center is discussed,and simple and practical equations are proposed as estimations for the stresses at the center of the BD specimen for low to moderate anisotropic rocks.For highly anisotropic rocks,the reference plots can be used for more accuracy. 展开更多
关键词 Brazilian test Transverse isotropy Rock anisotropy Anisotropic disk Tensile stress Shear stress
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
13
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Peptide Transporter OsNPF8.1 Contributes to Sustainable Growth under Salt and Drought Stresses,and Grain Yield under Nitrogen Deficiency in Rice
14
作者 QIU Diyang HU Rui +6 位作者 LI Ji LI Ying DING Jierong XIA Kuaifei ZHONG Xuhua FANG Zhongming ZHANG Mingyong 《Rice science》 SCIE CSCD 2023年第2期113-126,I0031-I0034,共18页
Peptide transport is important for plant tissues where rapid proteolysis occurs,especially during germination and senescence,to enhance redistribution of organic nitrogen(N).However,the biological role of peptide tran... Peptide transport is important for plant tissues where rapid proteolysis occurs,especially during germination and senescence,to enhance redistribution of organic nitrogen(N).However,the biological role of peptide transporters is poorly investigated in rice.We characterized the function of the peptide transporter OsNPF8.1 of rice nitrate transporter 1/peptide transporter family(NPF).Ectopic expression of OsNPF8.1 in yeast revealed that OsNPF8.1 encoded a high-affinity di-/tri-peptide transporter,and the osnpf8.1 mutants had a lower uptake rate of the fluorescent-labelled dipeptide c in leaves of rice seedlings.Histochemical assays showed that OsNPF8.1 was highly expressed in mesophyll cells and vascular parenchyma cells,but not detected in root hairs and epidermises.Expression of OsNPF8.1 was induced by N deficiency,drought,Na Cl and abscisic acid,and kept at a high level in senescing leaves.Under N deficiency conditions,compared with the wild type Zhonghua 11,the osnpf8.1 mutants grew slower at the seedling stage,and had lower grain yield and lower N content in the grains.In contrast,OsNPF8.1-over-expressing rice(OsNPF8.1-OE)grew faster at the seedling stage and had a higher grain yield.The osnpf8.1 seedlings were less tolerant to salt and drought stresses.These results suggested that stress-induced organic N transportation mediated by OsNPF8.1 might contribute to balance plant growth and tolerate to salt/drought stress and N-deficiency. 展开更多
关键词 abiotic stress NITROGEN peptide transporter RICE
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
15
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Residual Stresses and Forming Quality of Metal Bipolar Plates for PEMFC During the Stamping Process
16
作者 Zhang Jie Wang Ruichuan Wu Ningpan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期51-64,共14页
Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and ... Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process. 展开更多
关键词 PEMFC metallic bipolar plate STAMPING residual stress spring back
下载PDF
Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling
17
作者 Kwang Seon Shin Lifei Wang +3 位作者 Mingzhe Bian Shihoon Choi Alexander Komissarov Viacheslav Bazhenov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2027-2041,共15页
Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear... Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear stress(CRSS)of slips and twinning in Mg single crystals.The duplex non-basal slip took place in the temperature range from 613 to 733 K when the single crystal samples were stretched along the<0110>direction.In contrast,the single basal slip and prismatic slip were mainly activated in the temperature range from RT to 733 K when the tensile directions were inclined at an angle of 45°with the basal and the prismatic plane,respectively.Viscoplastic self-consistent(VPSC)crystal modeling simulations with genetic algorithm code(GA-code)were carried out to obtain the best fitted CRSSs of major deformation modes,such as basal slip,prismatic slip,pyramidalⅡ,{1012}tensile twinning and{1011}compressive twinning when duplex slips accommodated deformation.Additionally,CRSSs of the basal and the prismatic slip were derived using the Schmid factor(SF)criterion when the single slip mainly accommodated deformation.From the CRSSs of major deformation modes obtained by the VPSC simulations and the SF calculations,the CRSSs for basal slip and{1012}tensile twinning were found to show a weak temperature dependence,whereas those for prismatic,slip and{1011}compressive twinning exhibited a strong temperature dependence.From the comparison of previous results,VPSC-GA modeling was proved to be an effective method to obtain the CRSSs of various deformation modes of Mg and its alloys. 展开更多
关键词 MAGNESIUM Single crystal Critical resolve shear stress SLIP TWINNING
下载PDF
A Way to Determine the Maximum Inducible Residual Stresses in Steel by Mechanical Surface Treatment
18
作者 Eckehard Mueller 《材料科学与工程(中英文A版)》 2023年第2期48-51,共4页
The issue of determining the maximum compressive residual stress that can be induced through mechanical surface treatment is of great significance.There are two possible approaches,namely stress peening and stress rol... The issue of determining the maximum compressive residual stress that can be induced through mechanical surface treatment is of great significance.There are two possible approaches,namely stress peening and stress rolling,both to determine the limit.Steel with high hardness may be under the yield strength,while for those with lower tensile strength,the hardness is increased,and the limit is above the tensile strength. 展开更多
关键词 Residual stress deep rolling shot peening stress peening stress rolling
下载PDF
Experimental investigation on crack initiation and damage stresses of deep granite under triaxial compression using acoustic methods
19
作者 Xiaoling Zhao Tao Zhou +2 位作者 Tianqi Zhai Yang Ju Jianbo Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3071-3078,共8页
Crack initiation stress and crack damage stress are two critical indices for assessing the fracture strength of rock mass.However,understanding the stress characteristics of crack initiation and damage under triaxial ... Crack initiation stress and crack damage stress are two critical indices for assessing the fracture strength of rock mass.However,understanding the stress characteristics of crack initiation and damage under triaxial compression remains still immature.To address this problem,by acoustic monitoring,i.e.ultrasonic wave transmission and acoustic emission(AE),the integrated triaxial compression experiments were carried out on granitic specimens.The crack initiation and damage stresses were determined by wave velocity,wave amplitude and AE methods,respectively.The discrepancy of stresses for crack initiation and damage identified by these methods were examined.Results showed that the confinement affected the peak stress and corresponding strain,and these two parameters increased with increasing confining pressure.The ultrasonic wave velocity and wave amplitude first increased and then remained relatively stable,and finally decreased with increasing axial compressive stress.The number of AE events stayed at a relatively low extent until axial stress approached the peak;after that,the AE accumulative counts skyrocketed to the maximum.It also shows that for a given confinement,the stresses for crack initiation and damage identified by the wave amplitude method were the smallest,followed those by AE method and wave velocity method.Moreover,the stresses for crack initiation and crack damage identified by these methods increased generally with confining pressures.However,the rate of increment of these two crack stresses decreased with increasing confining pressure.In addition,the slight decrease in these two crack stresses ratios was noticed with increasing confining pressure.The findings are helpful to understand the crack stresses of deep rocks,in terms of support of deep underground engineering. 展开更多
关键词 Crack stress Ultrasonic wave Acoustic emission(AE) Triaxial compression
下载PDF
Modes of multi-mechanistic gas diffusion in shale matrix at varied effective stresses:Observations and analysis
20
作者 Tian-Yu Chen Yan-Yu Hao +3 位作者 Derek Elsworth Hong-Ming Zhang Zhi-Ming Hu Guang-Lei Cui 《Petroleum Science》 SCIE EI CSCD 2023年第5期2908-2920,共13页
Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size population... Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size populations in shale matrix under recreated in situ stress is lacking.We report gas-diffusion measurements under constant in situ stress but variable gas pressures for contrasting non-adsorbent(helium(He))and adsorbed(methane(CH_(4)))gases to investigate the impact of effective stress on the evolution of dominant mechanisms of diffusion.An intact sample replicates true pore-network topology and diffusion paths.An integrated diffusion model is proposed that combines the effects of slip flow,Knudsen flow,and surface diffusion to constrain the evolution of these flow regimes and their respective contributions to the observational data.Finally,a probability density function(PDF)is employed to separate the gas content distributions of macropores and micropores from the total gas content and to investigate gas contributions in various pores.The results reveal that the diffusion coefficients of both He and CH_(4) in macropores and micropores increase with gas pressure but decrease with increasing effective stress.The diffusion coefficients of He and CH_(4) are different in macropores but remain nearly the same in micropores.The diffusion coefficients of slip flow and surface diffusion increase with decreasing effective stress except for CH_(4) diffusion in the micropores,while the evolution of Knudsen diffusion shows the opposite trend.Slip flow plays a dominant role in He and CH_(4) diffusion within macropores(pore size 45 nm).Knudsen diffusion gradually becomes significant for He diffusion in the micropores(pore size 4 nm),conversely,for CH_(4) diffusion in the micropores,surface diffusion becomes significant.Related to gas production from reservoirs,the contributions of the micropores will increase gradually with the duration of gas recovery,indicating the significant role of gas diffusion in micropores to steady supply during latestage production. 展开更多
关键词 Diffusion coefficient In situ stress Varied pore types Diffusion mechanisms Gas-content contributions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部