Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m...Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.展开更多
The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt m...The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt marsh.Since the exotic species Spartina alterniflora(S. alterniflora) was introduced in 1995, a rapid expansion has occurred at Chongming Dongtan Nature Reserve(CDNR) in the Changjiang(Yangtze) River Estuary, China.Several important vegetation-environment factors including soil elevation, tidal channels density(TCD),vegetation classification and fractional vegetation cover(FVC) were extracted by remote sensing method combined with field measurement. To ignore the details in interaction between biological and physical process,the relationship between them was discussed at a large scale of the whole saltmarsh. The results showed that Scirpus mariqueter(S. mariqueter) can endure the greatest elevation variance with 0.33 m throughout the marsh in CDNR. But it is dominant in the area less than 2.5 m with the occurrence frequency reaching 98%. S. alterniflora has usually been found on the most elevated soils higher than 3.5 m but has a narrow spatial distribution. The rapid decrease of S. mariqueter can be explained by stronger competitive capacity of S. alterniflora on the high tidal flat. FVC increases with elevation which shows significant correlation with elevation(r=0.30, p〈0.001). But the frequency distribution of FVC indicates that vegetation is not well developed on both elevated banks near tidal channels from the whole scale mainly due to tidal channel lateral swing and human activities. The significant negative correlation(r=–0.20, p〈0.001) was found between FVC and TCD, which shows vegetation is restricted to grow in higher TCD area corresponding to lower elevation mainly occupied by S. mariqueter communities. The maximum occurrence frequency of this species reaches to 97% at the salt marsh with TCD more than 8 m/m2.展开更多
The spectral reflectance of recently formed salt marshes at the mouth of the Yangtze River,which are undergoing invasion by Spartina alterniflora,were assessed to determine the potential utility of remotely sensed dat...The spectral reflectance of recently formed salt marshes at the mouth of the Yangtze River,which are undergoing invasion by Spartina alterniflora,were assessed to determine the potential utility of remotely sensed data in assessing future invasion and changes in species composition.Following a review of published research on remote sensing of salt marshes,53 locations along three transects were sampled for paired data on plant species composition and spectral reflectance using a FieldSpecTM Pro JR Field Portable Spectroradiometer.Spectral data were processed concerning reflectance,and the averaged reflectance values for each sample were reanalysed to correspond to a 12-waveband bandset of the Compact Airborne Spectral Imager.The spectral data were summarised using principal components analysis(PCA)and the relationships between the vegetation composition,and the PCA axes of spectral data were examined.The first PCA axis of the reflectance data showed a strong correlation with variability in near infrared reflectance and‘brightness’,while the second axis was correlated with visible reflectance and‘greenness’.Total vegetation cover,vegetation height,and mudflat cover were all significantly related to the first axis.The implications of this in terms of the ability of remote sensing to distinguish the various salt marsh species and in particular the invasive species S.alterniflora were discussed.Major differences in species with various physiognomies could be recognised but problems occurred in separating early colonising S.alterniflora from other species at that stage.Further work using multi-seasonal hyperspectral data might assist in solving these problems.展开更多
Objective:To determine the chemical constituents of the traditional vegetal salts and find out if they are safe to consume.Methods:Seven different salts have been obtained from three provinces,of which five belong to ...Objective:To determine the chemical constituents of the traditional vegetal salts and find out if they are safe to consume.Methods:Seven different salts have been obtained from three provinces,of which five belong to Morobe Province.The cations were determined using inductively coupled plasma atomic emission spectroscopy and anions using titrimetry,gravimetry and spectrophotometry.Others like solubility,electrical conductivity,pH,antimicrobial,Fourier transform infrared spectral and volatility studies have been carried out for these salts.Results:While few salts were found to be stable,others were deliquescent;and the colour varies from white to black through yellow and brown.It was found that the potassium ion was dominant while others including sodium and calcium were found in lower concentrations.For the first time,certain d-block metal concentrations were measured though most of them were found to be present at very low levels.Other parameters like volatility,solubility,electrical conductivity,antimicrobial and Fourier transform infrared spectral studies were carried out for the first time for these vegetal salts in Papua New Guinea.Conclusions:The salt’s deliquescence could be correlated to the presence of anions like carbonate,bicarbonate and hydroxide which strongly contribute towards it.Similarly,solubility and conductivity of the salts could be correlated well.The salts were found to be harmless for consumption,but for the high potassium content.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41230751,41101547)Scientific Research Foundation of Graduate School of Nanjing University(No.2012CL14)
文摘Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.
基金Program Strategic Scientific Alliances between China and the Netherlands under contract No.2008DFB90240Open Research Fund Program for State Key Laboratory of Estuarine and Coastal Research under contract No.SKLEC201207Open Research Fund Program for Shandong Province Key Laboratory of Marine Ecology Environment and Disaster Prevention under contract No.2012011
文摘The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt marsh.Since the exotic species Spartina alterniflora(S. alterniflora) was introduced in 1995, a rapid expansion has occurred at Chongming Dongtan Nature Reserve(CDNR) in the Changjiang(Yangtze) River Estuary, China.Several important vegetation-environment factors including soil elevation, tidal channels density(TCD),vegetation classification and fractional vegetation cover(FVC) were extracted by remote sensing method combined with field measurement. To ignore the details in interaction between biological and physical process,the relationship between them was discussed at a large scale of the whole saltmarsh. The results showed that Scirpus mariqueter(S. mariqueter) can endure the greatest elevation variance with 0.33 m throughout the marsh in CDNR. But it is dominant in the area less than 2.5 m with the occurrence frequency reaching 98%. S. alterniflora has usually been found on the most elevated soils higher than 3.5 m but has a narrow spatial distribution. The rapid decrease of S. mariqueter can be explained by stronger competitive capacity of S. alterniflora on the high tidal flat. FVC increases with elevation which shows significant correlation with elevation(r=0.30, p〈0.001). But the frequency distribution of FVC indicates that vegetation is not well developed on both elevated banks near tidal channels from the whole scale mainly due to tidal channel lateral swing and human activities. The significant negative correlation(r=–0.20, p〈0.001) was found between FVC and TCD, which shows vegetation is restricted to grow in higher TCD area corresponding to lower elevation mainly occupied by S. mariqueter communities. The maximum occurrence frequency of this species reaches to 97% at the salt marsh with TCD more than 8 m/m2.
基金This research was funded by the Key Project of the Shanghai Science and Technology Committee(Grant No.06DZ12302)National Basic Research Program of China(Grant No.2004CB720505).
文摘The spectral reflectance of recently formed salt marshes at the mouth of the Yangtze River,which are undergoing invasion by Spartina alterniflora,were assessed to determine the potential utility of remotely sensed data in assessing future invasion and changes in species composition.Following a review of published research on remote sensing of salt marshes,53 locations along three transects were sampled for paired data on plant species composition and spectral reflectance using a FieldSpecTM Pro JR Field Portable Spectroradiometer.Spectral data were processed concerning reflectance,and the averaged reflectance values for each sample were reanalysed to correspond to a 12-waveband bandset of the Compact Airborne Spectral Imager.The spectral data were summarised using principal components analysis(PCA)and the relationships between the vegetation composition,and the PCA axes of spectral data were examined.The first PCA axis of the reflectance data showed a strong correlation with variability in near infrared reflectance and‘brightness’,while the second axis was correlated with visible reflectance and‘greenness’.Total vegetation cover,vegetation height,and mudflat cover were all significantly related to the first axis.The implications of this in terms of the ability of remote sensing to distinguish the various salt marsh species and in particular the invasive species S.alterniflora were discussed.Major differences in species with various physiognomies could be recognised but problems occurred in separating early colonising S.alterniflora from other species at that stage.Further work using multi-seasonal hyperspectral data might assist in solving these problems.
文摘Objective:To determine the chemical constituents of the traditional vegetal salts and find out if they are safe to consume.Methods:Seven different salts have been obtained from three provinces,of which five belong to Morobe Province.The cations were determined using inductively coupled plasma atomic emission spectroscopy and anions using titrimetry,gravimetry and spectrophotometry.Others like solubility,electrical conductivity,pH,antimicrobial,Fourier transform infrared spectral and volatility studies have been carried out for these salts.Results:While few salts were found to be stable,others were deliquescent;and the colour varies from white to black through yellow and brown.It was found that the potassium ion was dominant while others including sodium and calcium were found in lower concentrations.For the first time,certain d-block metal concentrations were measured though most of them were found to be present at very low levels.Other parameters like volatility,solubility,electrical conductivity,antimicrobial and Fourier transform infrared spectral studies were carried out for the first time for these vegetal salts in Papua New Guinea.Conclusions:The salt’s deliquescence could be correlated to the presence of anions like carbonate,bicarbonate and hydroxide which strongly contribute towards it.Similarly,solubility and conductivity of the salts could be correlated well.The salts were found to be harmless for consumption,but for the high potassium content.