In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and...In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and industry upgrades but also played a significant role in the rapid development of emerging industries.Based on the installed number of industrial robots and the industrial data by the National Bureau of Statistics,this study establishes a theoretical framework with the econometric model and compares the impact of AI on different categories of industries through empirical analysis.Our results show that AI not only promotes economic growth but also plays a key role in promoting the tertiary industry.Hence,optimization of industrial structure and economic upgrade can be induced.展开更多
Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the pro...Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the process industry,namely,deep integration of industrial artificial intelligence and the Industrial Internet with the process industry,is proposed.This paper analyzes the development status of the existing three-tier structure of the process industry,which consists of the enterprise resource planning,the manufacturing execution system,and the process control system,and examines the decision-making,control,and operation management adopted by process enterprises.Based on this analysis,it then describes the meaning of an intelligent manufacturing framework and presents a vision of an intelligent optimal decision-making system based on human–machine cooperation and an intelligent autonomous control system.Finally,this paper analyzes the scientific challenges and key technologies that are crucial for the successful deployment of intelligent manufacturing in the process industry.展开更多
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl...Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.展开更多
Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and respo...Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally,to develop different transformation scenarios for a green future, we propose four strategies: 1) policy integration for promoting green industry, 2)system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty,risks, and long-time horizons.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance indus...The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
At this memorable moment,we are excited to celebrate the 20th anniversary of CHINA FOUNDRY journal.Since its inception in August 2004,this academic platform dedicated to disseminating Chinese casting technology has tr...At this memorable moment,we are excited to celebrate the 20th anniversary of CHINA FOUNDRY journal.Since its inception in August 2004,this academic platform dedicated to disseminating Chinese casting technology has traversed two full decades.Over this period,we have received strong support from numerous domestic and international industry experts and scholars.展开更多
Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further...Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.展开更多
In the process of industrialization of tomato industry in Xinjiang, the cooperative models of rural households and tomato processing enterprises are order type, mediated type and workshop type. The contents, closeness...In the process of industrialization of tomato industry in Xinjiang, the cooperative models of rural households and tomato processing enterprises are order type, mediated type and workshop type. The contents, closeness degree and stability of cooperation of them are different. Under different cooperation models, the closeness degree of pillar industry and rural households differs, as well as the speed and effect of the technology promotion. By comparing the situation of technology promotion under the three cooperative models, the results can be obtained. The workshop type can reduce the risks of adopting new technologies of farmers greatly; strengthen the internal motivation of farmers to adopt new technology, so it can attract more farmers. Therefore, the workshop type represents the developmental direction of industrialization of tomato industry in Xinjiang to a certain extent.展开更多
Economies that have effectively escaped the“middle-income trap”demonstrate common traits in their industrial restructuring as they progressed to high-income status.These include a relatively stable share of an econ...Economies that have effectively escaped the“middle-income trap”demonstrate common traits in their industrial restructuring as they progressed to high-income status.These include a relatively stable share of an economy’s manufacturing sector,a reasonable economic structure,enhanced industrial capabilities,and growth driven by innovation.However,late-moving countries face a number of hurdles as they strive to cross this threshold.China’s development advantages include,among other things,a complete industrial system,a more balanced industrial structure,growing indigenous innovation capabilities,continual expansion and upgrading of domestic demand,and a greater degree of openness.These capabilities have provided continuous momentum for industrial growth,allowing China to capitalize on the next wave of technological and industrial revolutions while also promoting long-term,steady industrial development.During its modernization efforts,China has seen substantial changes in the external environment surrounding its industrial development.We must not only recognize the increasing complexity,intensity,and uncertainty of these changes,but also take proactive steps to solve diverse issues and capitalize on opportunities arising from global digital and green transitions.Equal focus should be placed on strengthening reforms and promoting high-level openness,improving policy coordination and consistency,and pursuing an innovation-driven strategy.This will speed the development of a modern industrial system and encourage the formation of new,high-quality productive forces.展开更多
In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
Tea is an important global commodity,with important tea-growing regions spanning across South America,Africa,and Asia,and burgeoning smaller-scale and artisanal tea production in the UK and Europe.In each of these reg...Tea is an important global commodity,with important tea-growing regions spanning across South America,Africa,and Asia,and burgeoning smaller-scale and artisanal tea production in the UK and Europe.In each of these regions,the quality and quantity of tea production,with their economic and social consequences,are highly sensitive to variations in the climate on both short-term weather,seasonal and climate change timescales.The provision of tailored climate information in a timely and accessible manner through the development,delivery and use of climate services can help tea-farmers and other relevant stakeholders better understand the impacts of climate variability and climate change on decision-making and a range of adaptive actions.This paper presents an overview of the Tea-CUP project(Co-developing Useful Predictions),a joint initiative between UK and Chinese partners,which aims to develop and implement solutions for improving robust decision-making.Co-production principles are core,ensuring that the resultant climate services are usable and useful;users'needs are met through close engagement and joint research and decision-making.The paper also reports on the exchange of knowledge and experiences,such as between tea growers in China and the UK,which has resulted from this collaborative work,fostering global knowledge sharing,enriching understanding,and driving innovation by integrating diverse perspectives and expertise from different countries.This is an unintended but valuable side-effect of the collaborative approach taken and highlights the benefits of a highly relational and multidisciplinary approach to climate services development that will inform future work in the field.展开更多
An experiment was meticulously conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, during the 2011-2012 potato growing season to develop integrat...An experiment was meticulously conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, during the 2011-2012 potato growing season to develop integrated crop management practices for the potato seed production of industrial processing varieties Asterix and Courage. Significantly, higher growth and yield parameters were found in the BADC-recommended practice. Later, another experiment was conducted to validate the BADC practice during the 2013-2014 potato growing season in two locations in Bangladesh. Results showed that the production of tuber per hill, tuber weight per hill as well as gross tuber yield per plot, higher proportion of storable seed tubers, and more quality seed potatoes (A-grade and B-grade) seed tubers were found significantly higher in the “BADC developed practice” compared to other treatments. Viral diseases (PLRV and PVY) prevalence was lower in “BADC developed practice”. Moreover, “BADC developed practice” contributed more economic yield by minimizing input cost compared to “Munshiganj advanced farmers’ practice”. Therefore, the “BADC developed practice” was found “superior” regarding yield, quality, and profitability in seed potato production of industrial varieties—Asterix and Courage in Bangladesh.展开更多
Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be...As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.展开更多
Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages a...Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages and the overall vitality of the rural economy.In this study,we established a measurement indicator system based on the definition of specialized households’resilience,elucidating the logical connection between specialized households’resilience and rural industrial development in China.The musical instrument industry in Lankao County,Henan Province of China,was employed as a case;survey data,the entropy method,and an obstacle diagnosis model were used to examine how instrument production specialized households responded to the challenges posed by Corona Virus Disease 2019(COVID-19)and the tightening of national environmental protection policies,yielding the following key findings:1)there exists substantial variation in the comprehensive resilience levels among different specialized households;2)the ability to learn and adapt is the most significant contributor to the overall resilience level of specialized households;3)technological proficiency and access to skilled talent emerge as pivotal factors influencing specialized households’resilience;4)the positioning of specialized households within the industrial supply chain and the stability of their income have a direct bearing on their resilience level.The influence of specialized households’resilience on industrial development primarily manifests in the following ways:stronger resilience correlates with increased stability in production and sales,fostering a more proactive approach to future actions.However,heightened exposure to the external macroeconomic environment can lead to a higher rate of export reduction.To enhance the development resilience of entities like specialized households and family farms,and to invigorate rural economic development,escalating investments in rural science and technology and prioritizing the training of technical talent become imperative.展开更多
With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo...With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
文摘In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and industry upgrades but also played a significant role in the rapid development of emerging industries.Based on the installed number of industrial robots and the industrial data by the National Bureau of Statistics,this study establishes a theoretical framework with the econometric model and compares the impact of AI on different categories of industries through empirical analysis.Our results show that AI not only promotes economic growth but also plays a key role in promoting the tertiary industry.Hence,optimization of industrial structure and economic upgrade can be induced.
基金This research was supported by the National Natural Science Foundation of China(61991400,61991403,and 61991404)China Institute of Engineering Consulting Research Project(2019-ZD-12)the 2020 Science and Technology Major Project of Liaoning Province(2020JH1/10100008),China.
文摘Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the process industry,namely,deep integration of industrial artificial intelligence and the Industrial Internet with the process industry,is proposed.This paper analyzes the development status of the existing three-tier structure of the process industry,which consists of the enterprise resource planning,the manufacturing execution system,and the process control system,and examines the decision-making,control,and operation management adopted by process enterprises.Based on this analysis,it then describes the meaning of an intelligent manufacturing framework and presents a vision of an intelligent optimal decision-making system based on human–machine cooperation and an intelligent autonomous control system.Finally,this paper analyzes the scientific challenges and key technologies that are crucial for the successful deployment of intelligent manufacturing in the process industry.
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
文摘Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
基金funded by the Chinese Academy of Sciences (KZZD-EW-TZ-12)National Natural Science Foundation of China (414201040045 and 41371488)Natural Science Foundation of Hainan Province (413129)
文摘Industrial transformation and green production(ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally,to develop different transformation scenarios for a green future, we propose four strategies: 1) policy integration for promoting green industry, 2)system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty,risks, and long-time horizons.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金Under the auspices of the Natural Science Foundation Project of Heilongjiang Province(No.LH2019D009)。
文摘The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
文摘At this memorable moment,we are excited to celebrate the 20th anniversary of CHINA FOUNDRY journal.Since its inception in August 2004,this academic platform dedicated to disseminating Chinese casting technology has traversed two full decades.Over this period,we have received strong support from numerous domestic and international industry experts and scholars.
文摘Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.
基金Supported by Major Biding Projects by National Social Science Fund(07&ZD026)
文摘In the process of industrialization of tomato industry in Xinjiang, the cooperative models of rural households and tomato processing enterprises are order type, mediated type and workshop type. The contents, closeness degree and stability of cooperation of them are different. Under different cooperation models, the closeness degree of pillar industry and rural households differs, as well as the speed and effect of the technology promotion. By comparing the situation of technology promotion under the three cooperative models, the results can be obtained. The workshop type can reduce the risks of adopting new technologies of farmers greatly; strengthen the internal motivation of farmers to adopt new technology, so it can attract more farmers. Therefore, the workshop type represents the developmental direction of industrialization of tomato industry in Xinjiang to a certain extent.
文摘Economies that have effectively escaped the“middle-income trap”demonstrate common traits in their industrial restructuring as they progressed to high-income status.These include a relatively stable share of an economy’s manufacturing sector,a reasonable economic structure,enhanced industrial capabilities,and growth driven by innovation.However,late-moving countries face a number of hurdles as they strive to cross this threshold.China’s development advantages include,among other things,a complete industrial system,a more balanced industrial structure,growing indigenous innovation capabilities,continual expansion and upgrading of domestic demand,and a greater degree of openness.These capabilities have provided continuous momentum for industrial growth,allowing China to capitalize on the next wave of technological and industrial revolutions while also promoting long-term,steady industrial development.During its modernization efforts,China has seen substantial changes in the external environment surrounding its industrial development.We must not only recognize the increasing complexity,intensity,and uncertainty of these changes,but also take proactive steps to solve diverse issues and capitalize on opportunities arising from global digital and green transitions.Equal focus should be placed on strengthening reforms and promoting high-level openness,improving policy coordination and consistency,and pursuing an innovation-driven strategy.This will speed the development of a modern industrial system and encourage the formation of new,high-quality productive forces.
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.
基金funded by the Met Office Climate Science for Service Partnership(CSSP)China project under the International Science Partnerships Fund(ISPF)supported by funds from the National Natural Science Foundation of China(Grant No.42475022).
文摘Tea is an important global commodity,with important tea-growing regions spanning across South America,Africa,and Asia,and burgeoning smaller-scale and artisanal tea production in the UK and Europe.In each of these regions,the quality and quantity of tea production,with their economic and social consequences,are highly sensitive to variations in the climate on both short-term weather,seasonal and climate change timescales.The provision of tailored climate information in a timely and accessible manner through the development,delivery and use of climate services can help tea-farmers and other relevant stakeholders better understand the impacts of climate variability and climate change on decision-making and a range of adaptive actions.This paper presents an overview of the Tea-CUP project(Co-developing Useful Predictions),a joint initiative between UK and Chinese partners,which aims to develop and implement solutions for improving robust decision-making.Co-production principles are core,ensuring that the resultant climate services are usable and useful;users'needs are met through close engagement and joint research and decision-making.The paper also reports on the exchange of knowledge and experiences,such as between tea growers in China and the UK,which has resulted from this collaborative work,fostering global knowledge sharing,enriching understanding,and driving innovation by integrating diverse perspectives and expertise from different countries.This is an unintended but valuable side-effect of the collaborative approach taken and highlights the benefits of a highly relational and multidisciplinary approach to climate services development that will inform future work in the field.
文摘An experiment was meticulously conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, during the 2011-2012 potato growing season to develop integrated crop management practices for the potato seed production of industrial processing varieties Asterix and Courage. Significantly, higher growth and yield parameters were found in the BADC-recommended practice. Later, another experiment was conducted to validate the BADC practice during the 2013-2014 potato growing season in two locations in Bangladesh. Results showed that the production of tuber per hill, tuber weight per hill as well as gross tuber yield per plot, higher proportion of storable seed tubers, and more quality seed potatoes (A-grade and B-grade) seed tubers were found significantly higher in the “BADC developed practice” compared to other treatments. Viral diseases (PLRV and PVY) prevalence was lower in “BADC developed practice”. Moreover, “BADC developed practice” contributed more economic yield by minimizing input cost compared to “Munshiganj advanced farmers’ practice”. Therefore, the “BADC developed practice” was found “superior” regarding yield, quality, and profitability in seed potato production of industrial varieties—Asterix and Courage in Bangladesh.
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.
基金Scientific Research Project of Liaoning Province Education Department,Code:LJKQZ20222457&LJKMZ20220781Liaoning Province Nature Fund Project,Code:No.2022-MS-291.
文摘As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.
基金Under the auspices of the China Social Science(No.21BJY218)National Natural Science Foundation of China(No.41801113)Newcomer funding from Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.E0V00100)。
文摘Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages and the overall vitality of the rural economy.In this study,we established a measurement indicator system based on the definition of specialized households’resilience,elucidating the logical connection between specialized households’resilience and rural industrial development in China.The musical instrument industry in Lankao County,Henan Province of China,was employed as a case;survey data,the entropy method,and an obstacle diagnosis model were used to examine how instrument production specialized households responded to the challenges posed by Corona Virus Disease 2019(COVID-19)and the tightening of national environmental protection policies,yielding the following key findings:1)there exists substantial variation in the comprehensive resilience levels among different specialized households;2)the ability to learn and adapt is the most significant contributor to the overall resilience level of specialized households;3)technological proficiency and access to skilled talent emerge as pivotal factors influencing specialized households’resilience;4)the positioning of specialized households within the industrial supply chain and the stability of their income have a direct bearing on their resilience level.The influence of specialized households’resilience on industrial development primarily manifests in the following ways:stronger resilience correlates with increased stability in production and sales,fostering a more proactive approach to future actions.However,heightened exposure to the external macroeconomic environment can lead to a higher rate of export reduction.To enhance the development resilience of entities like specialized households and family farms,and to invigorate rural economic development,escalating investments in rural science and technology and prioritizing the training of technical talent become imperative.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant Number:LH2021F002).
文摘With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.