期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Validation of the effects of temperature simulated by multi-model ensemble and prediction of mean temperature changes for the next three decades in China
1
作者 Ke Liu Jie Pan +1 位作者 ShengCai Tao YinLong Xu 《Research in Cold and Arid Regions》 2012年第1期56-64,共9页
Using series of daily average temperature observations over the period of 1961-1999 of 701 meteorological stations in China, and simulated results of 20 global climate models (such as BCCR_BCM2.0, CGCM3T47) during t... Using series of daily average temperature observations over the period of 1961-1999 of 701 meteorological stations in China, and simulated results of 20 global climate models (such as BCCR_BCM2.0, CGCM3T47) during the same period as the observation, we validate and analyze the simulated results of the models by using three factor statistical method, achieve the results of mul- ti-model ensemble, test and verify the results of multi-model ensemble by using the observation data during the period of 1991-1999. Finally, we analyze changes of the annual mean temperature result of multi-mode ensemble prediction for the period of 2011-2040 under the emission scenarios A2, A1B and B 1. Analyzed results show that: (1) Global climate models can repro- duce Chinese regional spatial distribution of annual mean temperature, especially in low latitudes and eastern China. (2) With the factor of the trend of annual mean temperature changes in reference period, there is an obvious bias between the model and the observation. (3) Testing the result of multi-model ensemble during the period of 1991-1999, we can simulate the trend of temper- ature increase. Compared to observation, the result of different weighing multi-model ensemble prediction is better than the same weighing ensemble. (4) For the period of 20ll-2040, the growth of the annual mean temperature in China, which results from multi-mode ensemble prediction, is above 1℃. In the spatial distribution of annual mean temperature, under the emission scenarios of A2, A1B and B 1, the trend of growth in South China region is the smallest, the increment is less than or equals to 0.8℃; the trends in the northwestern region and south of the Qinghai-Tibet Plateau are the largest, the increment is more than 1℃. 展开更多
关键词 global climate model different weighing multi-model ensemble same weighing multi-model ensemble wanning
下载PDF
Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field 被引量:42
2
作者 祝从文 Chung-Kyu PARK +1 位作者 Woo-Sung LEE Won-Tae YUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期867-884,共18页
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni... The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast. 展开更多
关键词 summer monsoon precipitation multi-model ensemble prediction statistical downscaling forecast
下载PDF
STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS 被引量:9
3
作者 张涵斌 智协飞 +2 位作者 陈静 王亚男 王轶 《Journal of Tropical Meteorology》 SCIE 2015年第4期389-399,共11页
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for ... This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible. 展开更多
关键词 TIGGE data multi-model ensemble tropical cyclone biweight mean
下载PDF
Ensemble Simulation of Land Evapotranspiration in China Based on a Multi-Forcing and Multi-Model Approach 被引量:6
4
作者 Jianguo LIU Binghao JIA +1 位作者 Zhenghui XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第6期673-684,共12页
In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (... In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over China's Mainland during 1982-2007. The results showed that various simulations of each member and their arithmetic mean (EnsAVlean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs_MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs_MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens_Mean was closer to Obs_MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs_MTE and Ens_Mean exhibited a significant increasing trend during 1982-98; whereas after 1998, when the last big EI Nifio event occurred, the Ens_Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs_MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China. 展开更多
关键词 land evapotranspiration ensemble simulations multi-forcing and multi-model approach spatiotemporal varia-tion uncertainty
下载PDF
Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall 被引量:5
5
作者 LI Fang LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期497-504,共8页
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu... Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble. 展开更多
关键词 probability density function seasonal prediction multi-model ensemble Yangtze River valley summer rainfall Bayesian scheme
下载PDF
A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble 被引量:2
6
作者 Hui Liu Rui Yang +1 位作者 Zhu Duan Haiping Wu 《Engineering》 SCIE EI 2021年第12期1751-1765,共15页
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ... Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions. 展开更多
关键词 Dissolved oxygen concentrations forecasting Time-series multi-step forecasting Multi-factor analysis Empirical wavelet transform decomposition multi-model optimization ensemble
下载PDF
A Bayesian Scheme for Probabilistic Multi-Model Ensemble Prediction of Summer Rainfall over the Yangtze River Valley 被引量:6
7
作者 Li Fang Zeng Qing-Cun Li Chao-Fan 《Atmospheric and Oceanic Science Letters》 2009年第5期314-319,共6页
A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low f... A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low forecast skill of rainfall in dynamic models,the time series of regressed YRV summer rainfall are selected as ensemble members in the new scheme,instead of commonly-used YRV summer rainfall simulated by models.Each time series of regressed YRV summer rainfall is derived from a simple linear regression.The predictor in each simple linear regression is the skillfully simulated circulation or surface temperature factor which is highly linear with the observed YRV summer rainfall in the training set.The high correlation between the ensemble mean of these regressed YRV summer rainfall and observation benefit extracting more sample information from the ensemble system.The results show that the cross-validated skill of the new scheme over the period of 1960 to 2002 is much higher than equally-weighted ensemble,multiple linear regression,and Bayesian ensemble with simulated YRV summer rainfall as ensemble members.In addition,the new scheme is also more skillful than reference forecasts (random forecast at a 0.01 significance level for ensemble mean and climatology forecast for probability density function). 展开更多
关键词 multi-model ensemble BAYESIAN PROBABILISTIC seasonal prediction
下载PDF
Improving the simulation of terrestrial water storage anomalies over China using a Bayesian model averaging ensemble approach 被引量:1
8
作者 LIU Jian-Guo JIA Bing-Hao +1 位作者 XIE Zheng-Hui SHI Chun-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期322-329,共8页
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph... The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data. 展开更多
关键词 Terrestrial water storage anomalies multi-forcing and multi-model ensemble simulation Bayesian model averaging spatiotemporal variation UNCERTAINTY
下载PDF
Reliability ensemble averaging reduces surface wind speed projection uncertainties in the 21st century over China 被引量:1
9
作者 Zheng-Tai ZHANG Chang-Ai XU 《Advances in Climate Change Research》 SCIE CSCD 2024年第2期222-229,共8页
Accurate prediction of future surface wind speed(SWS)changes is the basis of scientific planning for wind turbines.Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model... Accurate prediction of future surface wind speed(SWS)changes is the basis of scientific planning for wind turbines.Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model ensemble(MME)of the 6th Coupled Model Intercomparison Project(CMIP6).However,the simulation capability for SWS varies greatly in CMIP6 multi-models,so the MME results still have large uncertainties.In this study,we used the reliability ensemble averaging(REA)method to assign each model different weights according to their performances in simulating historical SWS changes and project the SWS under different shared socioeconomic pathways(SSPs)in 2015-2099.The results indicate that REA considerably improves the SWS simulation capacity of CMIP6,eliminating the overestimation of SWS by the MME and increasing the simulation capacity of spatial distribution.The spatial correlations with observations increased from 0.56 for the MME to 0.85 for REA.Generally,REA could eliminate the overestimation of the SWS by 33%in 2015-2099.Except for southeastern China,the SWS generally decreases over China in the near term(2020-2049)and later term(2070-2099),particularly under high-emission scenarios.The SWS reduction projected by REA is twice as high as that by the MME in the near term,reaching-4%to-3%.REA predicts a larger area of increased SWS in the later term,which expands from southeastern China to eastern China.This study helps to reduce the projected SWS uncertainties. 展开更多
关键词 Surface wind speed Uncertainty multi-model ensemble Reliability ensemble averaging CMIP6
原文传递
Assessing the Performance of a Dynamical Downscaling Simulation Driven by a Bias-Corrected CMIP6 Dataset for Asian Climate
10
作者 Zhongfeng XU Ying HAN +4 位作者 Meng-Zhuo ZHANG Chi-Yung TAM Zong-Liang YANG Ahmed M.EL KENAWY Congbin FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期974-988,共15页
In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three... In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction. 展开更多
关键词 bias correction multi-model ensemble mean dynamical downscaling interannual variability day-to-day variability validation
下载PDF
Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China 被引量:1
11
作者 Huanhuan ZHU Zhihong JIANG +5 位作者 Laurent LI Wei LI Sheng JIANG Panyu ZHOU Weihao ZHAO Tong LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第9期2125-2141,共17页
Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,the... Climate change adaptation and relevant policy-making need reliable projections of future climate.Methods based on multi-model ensemble are generally considered as the most efficient way to achieve the goal.However,their efficiency varies and inter-comparison is a challenging task,as they use a variety of target variables,geographic regions,time periods,or model pools.Here,we construct and use a consistent framework to evaluate the performance of five ensemble-processing methods,i.e.,multimodel ensemble mean(MME),rank-based weighting(RANK),reliability ensemble averaging(REA),climate model weighting by independence and performance(ClimWIP),and Bayesian model averaging(BMA).We investigate the annual mean temperature(Tav)and total precipitation(Prcptot)changes(relative to 1995–2014)over China and its seven subregions at 1.5 and 2℃warming levels(relative to pre-industrial).All ensemble-processing methods perform better than MME,and achieve generally consistent results in terms of median values.But they show different results in terms of inter-model spread,served as a measure of uncertainty,and signal-to-noise ratio(SNR).ClimWIP is the most optimal method with its good performance in simulating current climate and in providing credible future projections.The uncertainty,measured by the range of 10th–90th percentiles,is reduced by about 30%for Tav,and 15%for Prcptot in China,with a certain variation among subregions.Based on ClimWIP,and averaged over whole China under 1.5/2℃global warming levels,Tav increases by about 1.1/1.8℃(relative to 1995–2014),while Prcptot increases by about 5.4%/11.2%,respectively.Reliability of projections is found dependent on investigated regions and indices.The projection for Tav is credible across all regions,as its SNR is generally larger than 2,while the SNR is lower than 1 for Prcptot over most regions under 1.5℃warming.The largest warming is found in northeastern China,with increase of 1.3(0.6–1.7)/2.0(1.4–2.6)℃(ensemble’s median and range of the 10th–90th percentiles)under 1.5/2℃warming,followed by northern and northwestern China.The smallest but the most robust warming is in southwestern China,with values exceeding 0.9(0.6–1.1)/1.5(1.1–1.7)℃.The most robust projection and largest increase is achieved in northwestern China for Prcptot,with increase of 9.1%(–1.6–24.7%)/17.9%(0.5–36.4%)under 1.5/2℃warming.Followed by northern China,where the increase is 6.0%(–2.6–17.8%)/11.8%(2.4–25.1%),respectively.The precipitation projection is of large uncertainty in southwestern China,even with uncertain sign of variation.For the additional half-degree warming,Tav increases more than 0.5℃throughout China.Almost all regions witness an increase of Prcptot,with the largest increase in northwestern China. 展开更多
关键词 multi-model ensemble simulation ensemble-processing strategy Global warming targets Climate projection uncertainty assessment Regional climate change in China
原文传递
Assessment of total and extreme precipitation over central Asia via statistical downscaling: Added value and multi-model ensemble projection
12
作者 Li-Jun FAN Zhong-Wei YAN +1 位作者 Deliang CHEN Zhen LI 《Advances in Climate Change Research》 SCIE CSCD 2023年第1期62-76,共15页
Central Asia(CA)is highly sensitive and vulnerable to changes in precipitation due to global warming,so the projection of precipitation extremes is essential for local climate risk assessment.However,global and region... Central Asia(CA)is highly sensitive and vulnerable to changes in precipitation due to global warming,so the projection of precipitation extremes is essential for local climate risk assessment.However,global and regional climate models often fail to reproduce the observed daily precipitation distribution and hence extremes,especially in areas with complex terrain.In this study,we proposed a statistical downscaling(SD)model based on quantile delta mapping to assess and project eight precipitation indices at 73 meteorological stations across CA driven by ERA5 reanalysis data and simulations of 10 global climate models(GCMs)for present and future(2081-2100)periods under two shared socioeconomic pathways(SSP245 and SSP585).The reanalysis data and raw GCM outputs clearly underestimate mean precipitation intensity(SDII)and maximum 1-day precipitation(RX1DAY)and overestimate the number of wet days(R1MM)and maximum consecutive wet days(CWD)at stations across CA.However,the SD model effectively reduces the biases and RMSEs of the modeled precipitation indices compared to the observations.Also it effectively adjusts the distributional biases in the downscaled daily precipitation and indices at the stations across CA.In addition,it is skilled in capturing the spatial patterns of the observed precipitation indices.Obviously,SDII and RX1DAY are improved by the SD model,especially in the southeastern mountainous area.Under the intermediate scenario(SSP245),our SD multi-model ensemble projections project significant and robust increases in SDII and total extreme precipitation(R95PTOT)of 0.5 mm d^(-1) and 19.7 mm,respectively,over CA at the end of the 21st century(2081-2100)compared to the present values(1995-2014).More pronounced increases in indices R95PTOT,SDII,number of very wet days(R10MM),and RX1DAY are projected under the higher emission scenario(SSP585),particularly in the mountainous southeastern region.The SD model suggested that SDII and RX1DAY will likely rise more rapidly than those projected by previous model simulations over CA during the period 2081-2100.The SD projection of the possible future changes in precipitation and extremes improves the knowledge base for local risk management and climate change adaptation in CA. 展开更多
关键词 Local precipitation extremes Statistical downscaling multi-model ensemble projection Robustness and uncertainty Central Asia
原文传递
The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018 被引量:21
13
作者 Hong-Li REN Yujie WU +9 位作者 Qing BAO Jiehua MA Changzheng LIU Jianghua WAN Qiaoping LI Xiaofei WU Ying LIU Ben TIAN Joshua-Xiouhua FU Jianqi SUN 《Journal of Meteorological Research》 SCIE CSCD 2019年第3期540-552,共13页
Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of ... Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991-2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Nino-Southern Oscillation (ENSO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June-July-August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March-August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation. 展开更多
关键词 multi-model ensemble China multi-model ensemble PREDICTION system (CMME) real-time FORECAST SKILL assessment
原文传递
CEEMD-GRU模型动态称重算法研究
14
作者 杨帮 赖征创 杨晓翔 《中国测试》 CAS 北大核心 2023年第9期108-114,共7页
针对车辆动态称重过程中称重信号受外界干扰导致称重精度不高的问题,提出结合互补集合经验模态(CEEMD)和门控循环单元(GRU)神经网络的称重算法。采用CEEMD对原始称重信号进行分解,得到的残余分量为初步滤除干扰信号的轴重信号;然后将残... 针对车辆动态称重过程中称重信号受外界干扰导致称重精度不高的问题,提出结合互补集合经验模态(CEEMD)和门控循环单元(GRU)神经网络的称重算法。采用CEEMD对原始称重信号进行分解,得到的残余分量为初步滤除干扰信号的轴重信号;然后将残余分量归一化后作为GRU神经网络输入层构建网络模型,输出车辆轴重。研究结果表明,除去个别因异常数据导致的不良结果,该方法车辆动态称重误差控制在1.2%以内。相比于传统的单一模型,称重精度更高,实用性更强。 展开更多
关键词 动态称重 互补集合经验模态分解 门控循环单元神经网络 信号处理 深度学习
下载PDF
Multi-Model Ensemble Projection of Precipitation Changes over China under Global Warming of 1.5 and 2℃ with Consideration of Model Performance and Independence 被引量:6
15
作者 Tong LI Zhihong JIANG +1 位作者 Lilong ZHAO Laurent LI 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期184-197,共14页
A weighting scheme jointly considering model performance and independence(PI-based weighting scheme) is employed to deal with multi-model ensemble prediction of precipitation over China from 17 global climate models. ... A weighting scheme jointly considering model performance and independence(PI-based weighting scheme) is employed to deal with multi-model ensemble prediction of precipitation over China from 17 global climate models. Four precipitation metrics on mean and extremes are used to evaluate the model performance and independence. The PIbased scheme is also compared with a rank-based weighting scheme and the simple arithmetic mean(AM) scheme. It is shown that the PI-based scheme achieves notable improvements in western China, with biases decreasing for all parameters. However, improvements are small and almost insignificant in eastern China. After calibration and validation, the scheme is used for future precipitation projection under the 1.5 and 2℃ global warming targets(above preindustrial level). There is a general tendency to wetness for most regions in China, especially in terms of extreme precipitation. The PI scheme shows larger inhomogeneity in spatial distribution. For the total precipitation PRCPTOT(95 th percentile extreme precipitation R95 P), the land fraction for a change larger than 10%(20%) is 22.8%(53.4%)in PI, while 13.3%(36.8%) in AM, under 2℃ global warming. Most noticeable increase exists in central and east parts of western China. 展开更多
关键词 model performance and independence multi-model ensemble mean and extreme precipitation future projection 1.5 and 2℃global warming
原文传递
Probabilistic Seasonal Prediction of Summer Rainfall over East China Based on Multi-Model Ensemble Schemes 被引量:2
16
作者 李芳 《Acta meteorologica Sinica》 SCIE 2011年第3期283-292,共10页
The skill of probability density function (PDF) prediction of summer rainfall over East China using optimal ensemble schemes is evaluated based on the precipitation data from five coupled atmosphere-ocean general ci... The skill of probability density function (PDF) prediction of summer rainfall over East China using optimal ensemble schemes is evaluated based on the precipitation data from five coupled atmosphere-ocean general circulation models that participate in the ENSEMBLES project. The optimal ensemble scheme in each region is the scheme with the highest skill among the four commonly-used ones: the equally-weighted ensemble (EE), EE for calibrated model-simulations (Cali-EE), the ensemble scheme based on multiple linear regression analysis (MLR), and the Bayesian ensemble scheme (Bayes). The results show that the optimal ensemble scheme is the Bayes in the southern part of East China; the Cali-EE in the Yangtze River valley, the Yangtze-Huaihe River basin, and the central part of northern China; and the MLR in the eastern part of northern China. Their PDF predictions are well calibrated, and are sharper than or have approximately equal interval-width to the climatology prediction. In all regions, these optimal ensemble schemes outperform the climatology prediction, indicating that current commonly-used multi-model ensemble schemes are able to produce skillful PDF prediction of summer rainfall over East China, even though more information for other model variables is not derived. 展开更多
关键词 multi-model ensemble UNCERTAINTY probability density function seasonal prediction RAINFALL
原文传递
多模式集合对中国气温的模拟效果及未来30年中国气温变化预估 被引量:16
17
作者 刘珂 许吟隆 +2 位作者 陶生才 潘婕 杨红龙 《高原气象》 CSCD 北大核心 2011年第2期363-370,共8页
利用1961-1999年中国区域701个气象站气温观测资料,分析了20个全球气候模式(IPCCAR4)在中国区域地面气温的模拟能力;利用三因素统计方法,先确定各模式气温模拟的权重因子,最后对多模式做不等权重和等权重的集合模拟。在此基础上分析了A2... 利用1961-1999年中国区域701个气象站气温观测资料,分析了20个全球气候模式(IPCCAR4)在中国区域地面气温的模拟能力;利用三因素统计方法,先确定各模式气温模拟的权重因子,最后对多模式做不等权重和等权重的集合模拟。在此基础上分析了A2,A1B,B1排放情景下未来时段(2011-2040年)中国区域的气温变化。结果表明:(1)全球模式对中国区域年平均气温的空间分布模拟较好,特别是在低纬地区及东部地区;但年平均气温演变趋势的模拟值较观测值偏差较大;(2)两种不同集合方法都可以模拟出中国区域的升温趋势,但不等权重集合效果略好于等权重集合;(3)2011-2040年,相对于1961-1990时段,多模式集合预估结果表明,3种温室气体排放情景下中国区域年平均气温的增幅均在1℃以上,其中华南地区的增幅最小,增幅<0.8℃,而西北和青藏高原南部地区增幅均在1℃以上。 展开更多
关键词 全球气候模式 模式不等权重集合 模式等权重集合 增温
下载PDF
基于RBF神经网络集成-模糊加权输出的数字温度传感器误差补偿 被引量:20
18
作者 林海军 滕召胜 +1 位作者 杨进宝 刘让周 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第7期1675-1680,共6页
数字温度传感器存在非线性误差,在高精度测温系统中需要进行误差补偿。提出了一种基于径向基函数神经网络集成-模糊加权输出(RBFNNE-FWO)的数字温度传感器误差补偿方法:首先根据数字温度传感器的误差特征,提取特征阈值,构造三个相互独... 数字温度传感器存在非线性误差,在高精度测温系统中需要进行误差补偿。提出了一种基于径向基函数神经网络集成-模糊加权输出(RBFNNE-FWO)的数字温度传感器误差补偿方法:首先根据数字温度传感器的误差特征,提取特征阈值,构造三个相互独立的成员RBFNN;考虑到成员网络之间边界误差补偿问题,构建一种RBFNN集成输出权值模糊调节器,获得RBFNN集成输出权值,从而完成数字温度传感器的全量程误差补偿。与多种方法的比较仿真实验表明,这种RBFNNE-FWO方法的性能最佳、各成员网络边界误差最小,补偿后的数字温度传感器误差减少了两个数量级,大大提高了测温准确度。 展开更多
关键词 数字温度传感器 误差补偿 径向基函数神经网络集成-模糊加权输出 边界误差
下载PDF
权重分布法集成预报试验 被引量:13
19
作者 陈桂英 艾秀 《应用气象学报》 CSCD 北大核心 2000年第A06期51-57,共7页
该工作提出了以历史预报评估参数为权重的权重分布客观集成预报方法 ,用该方法对 6种汛期预报方法 1 984~ 1 998年和 8个单位 1 995~ 1 998年的汛期预报进行了集成预报试验 .结果表明 ,经权重分布集成预报以后预测水平有明显提高 ,而... 该工作提出了以历史预报评估参数为权重的权重分布客观集成预报方法 ,用该方法对 6种汛期预报方法 1 984~ 1 998年和 8个单位 1 995~ 1 998年的汛期预报进行了集成预报试验 .结果表明 ,经权重分布集成预报以后预测水平有明显提高 ,而且效果相对稳定 .权重分布集成预报方法指导思想明确 ,可行性强 。 展开更多
关键词 集成预报 权重分布 试验 预报评分 天气预报
下载PDF
Regional Variability of Climate Change Hot-Spots in East Asia 被引量:11
20
作者 徐影 高学杰 F.GIORGI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期783-792,共10页
The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulat... The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulations for the B1, AIB, and A2 IPCC emission scenarios. The RCCI over East Asia exhibits marked sub-regional variability. Five sub-regional hot-spots are identified over the area of investigation: three in the northern regions (Northeast China, Mongolia, and Northwest China), one in eastern China, and one over the Tibetan Plateau. Contributions from different factors to the RCCI are discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 21st century shows different speeds of response time to global warming for the different sub-regions. Hot-spots firstly emerge in Northwest China and Mongolia. The Northeast China hot-spot becomes evident by the mid of the 21st century and it is the most prominent by the end of the century. While hot-spots are generally evident in all the 5 sub-regions for the A1B and A2 scenarios, only the Tibetan Plateau and Northwest China hot-spots emerge in the B1 scenario, which has the lowest greenhouse gas (GHG) concentrations. Our analysis indicates that subregional hot-spots show a rather complex spatial and temporal dependency on the GHG concentration and on the different factors contributing to the RCCI. 展开更多
关键词 regional climate change index multi-model ensemble sub-regional hot-spot East Asia
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部