The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the...The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
A three-electrode high-energy plasma synthetic jet(PSJ) actuator was used for shock wave control. This actuator is an enhanced version of the two-electrode actuator as a high-voltage trigger electrode is added to incr...A three-electrode high-energy plasma synthetic jet(PSJ) actuator was used for shock wave control. This actuator is an enhanced version of the two-electrode actuator as a high-voltage trigger electrode is added to increase the cavity volume and the input energy while retaining a relatively low disruptive voltage. The electrical properties were studied using current-voltage measurements, and the energy consumption was calculated. To assess the jet strength, the penetration of PSJ was compared with empirical values, and the results show that the momentum flux ratio of PSJ for a capacitance of 0.96, 1.6, and 3 μF was approximately equal to 0.6, 1.0, and 1.3, respectively. The interaction of PSJ with shock waves was acquired using high-speed shadowgraph imaging. The shock was generated by a 25° compression ramp in Mach 2 flow, and PSJ actuator was placed up-stream of the compression ramp. Under the action of PSJ, the strength of the shock was notably weakened, and the near-wall part of the shock was entirely eliminated. The results show the good control effect of the three-electrode high-energy PSJ in high-speed flow.展开更多
Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since ...Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries.展开更多
Electrode materials which can reversibly react with anions are of interest for aqueous dual-ion batteries.Herein,we propose a novel anion electrode,Cu3(PO4)2,for constructing an aqueous dual-ion cell.The Cu3(PO4)2 ele...Electrode materials which can reversibly react with anions are of interest for aqueous dual-ion batteries.Herein,we propose a novel anion electrode,Cu3(PO4)2,for constructing an aqueous dual-ion cell.The Cu3(PO4)2 electrode can operate in a quasi-neutral condition and deliver a reversible capacity of 115.6 mAh g^−1 with a well-defined plateau at−0.17 V versus Ag/AgCl.Its reaction mechanism shows that Cu3(PO4)2 decomposes into Cu2O and subsequently is converted into Cu during the initial discharge process.In the following charge process,Cu is oxidized into Cu2O.It suggests Cu3(PO4)2 reacts with OH−ions instead of PO43−ions after the initial discharge process and its potential thereby depends upon the OH−ions concentration in electrolyte.Additionally,an aqueous dual-ion cell is built by using pretreated Cu3(PO4)2 and Na0.44MnO2 as anode and cathode,respectively.During cycling,OH−ions and Na^+ions in electrolyte can be stored and released.Such a cell can provide a discharge capacity of 52.6 mAh g^−1 with plateaus at 0.70 and 0.45 V,exhibiting the potential of application.This work presents an available aqueous dual-ion cell and provides new insights into renewable energy storage and adjustment of the OH−ions concentration in aqueous buffer solution.展开更多
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing ve...A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed. Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.展开更多
The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor.Carbon-working,carbon-counter and Ag/AgCl reference electrodes were all manually prin...The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor.Carbon-working,carbon-counter and Ag/AgCl reference electrodes were all manually printed on the polyethylene terephthalate substrate forming the screen-printed three-electrode system by the conventional screen-printing process.As a mediator,Prussian blue could not only catalyze the electrochemical reduction of hydrogen peroxide produced from the enzyme reaction,but also keep the favorable potential around 0 V.The optimum operational conditions,including pH,potential and temperature,were investigated.The sensitivities of xanthine and hypoxanthine detections were 13.83 mA/M and 25.56 mA/M,respectively.A linear relationship was obtained in the concentration range between 0.10μM and 4.98μM for xanthine and between 0.50μM and 3.98μM for hypoxanthine.The small Michaelis-menten constant value of the xanthine oxidase biosensor was calculated to be 3.90 μM.The results indicate that the fabricated xanthine oxidase biosensor is effective and sensitive for the detection of xanthine and hypoxanthine.展开更多
Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocata...Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.展开更多
The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphene- dyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = Vo/Vw) equal to 1 are investigated by c...The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphene- dyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = Vo/Vw) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ioni-zable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard par-tition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The ob-tained results have been summarized in ionic partition dia-grams, which are a useful tool for predicting and interpret-ing the transfer mechanisms of ionizable drugs at the liq-uid/liquid interfaces and biological membranes.展开更多
基金supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075)。
文摘The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372349&11502295)the Nature Science Fund for Distinguished Young Scholars of National University of Defense Technology(Grant No.CJ110101)
文摘A three-electrode high-energy plasma synthetic jet(PSJ) actuator was used for shock wave control. This actuator is an enhanced version of the two-electrode actuator as a high-voltage trigger electrode is added to increase the cavity volume and the input energy while retaining a relatively low disruptive voltage. The electrical properties were studied using current-voltage measurements, and the energy consumption was calculated. To assess the jet strength, the penetration of PSJ was compared with empirical values, and the results show that the momentum flux ratio of PSJ for a capacitance of 0.96, 1.6, and 3 μF was approximately equal to 0.6, 1.0, and 1.3, respectively. The interaction of PSJ with shock waves was acquired using high-speed shadowgraph imaging. The shock was generated by a 25° compression ramp in Mach 2 flow, and PSJ actuator was placed up-stream of the compression ramp. Under the action of PSJ, the strength of the shock was notably weakened, and the near-wall part of the shock was entirely eliminated. The results show the good control effect of the three-electrode high-energy PSJ in high-speed flow.
基金supported by the National Natural Science Foundation of China(21808124,22075029)by Beijing Natural Science Foundation(JQ20004)+2 种基金by Scientific and Technological Key Project of Shanxi Province(20191102003)the Seed Fund of Shanxi Research Institute for Clean Energy(SXKYJF015)the Shuimu Tsinghua Scholar Program,and Tsinghua University Initiative Scientific Research Program。
文摘Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries.
基金This work is supported by NSAF joint Fund(U1830106)Ningbo S&I Innovation 2025 Major Special Program(2018B10061)K.C.Wong Magna Fund in Ningbo University.
文摘Electrode materials which can reversibly react with anions are of interest for aqueous dual-ion batteries.Herein,we propose a novel anion electrode,Cu3(PO4)2,for constructing an aqueous dual-ion cell.The Cu3(PO4)2 electrode can operate in a quasi-neutral condition and deliver a reversible capacity of 115.6 mAh g^−1 with a well-defined plateau at−0.17 V versus Ag/AgCl.Its reaction mechanism shows that Cu3(PO4)2 decomposes into Cu2O and subsequently is converted into Cu during the initial discharge process.In the following charge process,Cu is oxidized into Cu2O.It suggests Cu3(PO4)2 reacts with OH−ions instead of PO43−ions after the initial discharge process and its potential thereby depends upon the OH−ions concentration in electrolyte.Additionally,an aqueous dual-ion cell is built by using pretreated Cu3(PO4)2 and Na0.44MnO2 as anode and cathode,respectively.During cycling,OH−ions and Na^+ions in electrolyte can be stored and released.Such a cell can provide a discharge capacity of 52.6 mAh g^−1 with plateaus at 0.70 and 0.45 V,exhibiting the potential of application.This work presents an available aqueous dual-ion cell and provides new insights into renewable energy storage and adjustment of the OH−ions concentration in aqueous buffer solution.
基金This work was supported by the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Grant No. 29825111) the State Key Laboratory of Electroanalytical Chemistry of the CAS.
文摘A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed. Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.
基金supported by Science and Technology Commission of Shanghai Municipality (09391911500)
文摘The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor.Carbon-working,carbon-counter and Ag/AgCl reference electrodes were all manually printed on the polyethylene terephthalate substrate forming the screen-printed three-electrode system by the conventional screen-printing process.As a mediator,Prussian blue could not only catalyze the electrochemical reduction of hydrogen peroxide produced from the enzyme reaction,but also keep the favorable potential around 0 V.The optimum operational conditions,including pH,potential and temperature,were investigated.The sensitivities of xanthine and hypoxanthine detections were 13.83 mA/M and 25.56 mA/M,respectively.A linear relationship was obtained in the concentration range between 0.10μM and 4.98μM for xanthine and between 0.50μM and 3.98μM for hypoxanthine.The small Michaelis-menten constant value of the xanthine oxidase biosensor was calculated to be 3.90 μM.The results indicate that the fabricated xanthine oxidase biosensor is effective and sensitive for the detection of xanthine and hypoxanthine.
文摘Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.
文摘The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphene- dyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = Vo/Vw) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ioni-zable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard par-tition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The ob-tained results have been summarized in ionic partition dia-grams, which are a useful tool for predicting and interpret-ing the transfer mechanisms of ionizable drugs at the liq-uid/liquid interfaces and biological membranes.