The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient...The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.展开更多
Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified ...Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.展开更多
A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the...A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.展开更多
Reflectance model is a basic concept in computer vision. Some existing models combining the classical diffuse reflectance model and those for surfaces containing specular components can approximately describe real ref...Reflectance model is a basic concept in computer vision. Some existing models combining the classical diffuse reflectance model and those for surfaces containing specular components can approximately describe real reflectance. But the ratio of diffuse and specular reflection decided manually has no clear meaning. We propose a new polynomial hybrid reflectance model. The reflectance map equation with a known shape (for example cylinder) as a sample is used to estimate parameters of the proposed reflectance model by least square regression algorithm. Then the reflectance parameters for surfaces of the same class of materials can be determined. Experiments are performed for a metal surface. The synthesis images produced by the proposed method and existing ones are compared with the real acquired image, and the results show that the proposed reflectance model is suitable for describing real reflectance.展开更多
A novel unsupervised approach to automatically constructing multilevel image clusters from unordered im- ages is proposed in this paper. The whole input image col- lection is represented as an imaging sample space (...A novel unsupervised approach to automatically constructing multilevel image clusters from unordered im- ages is proposed in this paper. The whole input image col- lection is represented as an imaging sample space (ISS) con- sisting of globally indexed image features extracted by a new efficient multi^view image feature matching method. By mak- ing an analogy between image capturing and observation of ISS, each image is represented as a binary sequence, in which each bit indicates the visibility of a corresponding feature. Based on information theory-inspired image popularity and dissimilarity measures, we show that the image content and distance can be quantitatively described, guided by which an input image collection is organized into multilevel clusters automatically. The effectiveness and the efficiency of the pro- posed approach are demonstrated using three real image col- lections and promising results were obtained from both qual- itative and quantitative evaluation.展开更多
This paper presents a high-speed column-parallel cyclic analog-to-digital converter(ADC) for a CMOS image sensor.A correlated double sampling(CDS) circuit is integrated in the ADC,which avoids a stand-alone CDS ci...This paper presents a high-speed column-parallel cyclic analog-to-digital converter(ADC) for a CMOS image sensor.A correlated double sampling(CDS) circuit is integrated in the ADC,which avoids a stand-alone CDS circuit block.An offset cancellation technique is also introduced,which reduces the column fixed-pattern noise(FPN) effectively.One single channel ADC with an area less than 0.02 mm^2 was implemented in a 0.13μm CMOS image sensor process.The resolution of the proposed ADC is 10-bit,and the conversion rate is 1.6 MS/s. The measured differential nonlinearity and integral nonlinearity are 0.89 LSB and 6.2 LSB together with CDS, respectively.The power consumption from 3.3 V supply is only 0.66 mW.An array of 48 10-bit column-parallel cyclic ADCs was integrated into an array of CMOS image sensor pixels.The measured results indicated that the ADC circuit is suitable for high-speed CMOS image sensors.展开更多
基金financially supported by the National Instrumentation Program (No. 2011YQ17006702)the National Natural Science Foundation of China (No. 21027013 and No. 81102413)Fundamental Research Program of Shenzhen (No. JC201005280634A)
文摘The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.
基金supported by the National Natural Science Foundation of China(21375042,21405054,21525523,21574048,and21404028)the National Basic Research Program of China(2015CB932600,2013CB933000,and 2016YFF0100800)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen,China(JCYJ20150616144425376)1000 Young Talent Program(to F.Xia)
文摘Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.
基金supported by the National Natural Science Foundation of China (21575022, 21535003) the National High Technology Research and Development Program of China (2015AA020502)+1 种基金 the Fundamental Research Funds for the Central Universities (2242016K41055)Qing Lan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002)
文摘A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.
基金This work was supported by the National Natural Sci-ence Foundation of China under Grant No.60502021.
文摘Reflectance model is a basic concept in computer vision. Some existing models combining the classical diffuse reflectance model and those for surfaces containing specular components can approximately describe real reflectance. But the ratio of diffuse and specular reflection decided manually has no clear meaning. We propose a new polynomial hybrid reflectance model. The reflectance map equation with a known shape (for example cylinder) as a sample is used to estimate parameters of the proposed reflectance model by least square regression algorithm. Then the reflectance parameters for surfaces of the same class of materials can be determined. Experiments are performed for a metal surface. The synthesis images produced by the proposed method and existing ones are compared with the real acquired image, and the results show that the proposed reflectance model is suitable for describing real reflectance.
文摘A novel unsupervised approach to automatically constructing multilevel image clusters from unordered im- ages is proposed in this paper. The whole input image col- lection is represented as an imaging sample space (ISS) con- sisting of globally indexed image features extracted by a new efficient multi^view image feature matching method. By mak- ing an analogy between image capturing and observation of ISS, each image is represented as a binary sequence, in which each bit indicates the visibility of a corresponding feature. Based on information theory-inspired image popularity and dissimilarity measures, we show that the image content and distance can be quantitatively described, guided by which an input image collection is organized into multilevel clusters automatically. The effectiveness and the efficiency of the pro- posed approach are demonstrated using three real image col- lections and promising results were obtained from both qual- itative and quantitative evaluation.
基金supported by the National Natural Science Foundation of China(Nos.60976023,61234003)the Special Funds for Major State Basic Research Project of China(No.2011CB932902)
文摘This paper presents a high-speed column-parallel cyclic analog-to-digital converter(ADC) for a CMOS image sensor.A correlated double sampling(CDS) circuit is integrated in the ADC,which avoids a stand-alone CDS circuit block.An offset cancellation technique is also introduced,which reduces the column fixed-pattern noise(FPN) effectively.One single channel ADC with an area less than 0.02 mm^2 was implemented in a 0.13μm CMOS image sensor process.The resolution of the proposed ADC is 10-bit,and the conversion rate is 1.6 MS/s. The measured differential nonlinearity and integral nonlinearity are 0.89 LSB and 6.2 LSB together with CDS, respectively.The power consumption from 3.3 V supply is only 0.66 mW.An array of 48 10-bit column-parallel cyclic ADCs was integrated into an array of CMOS image sensor pixels.The measured results indicated that the ADC circuit is suitable for high-speed CMOS image sensors.