Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the nor...Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon(T1/T2) and Quartz(Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing,with an annual mean PM_(2.5)mass concentration of 102 μg/m^3. According to the calculated PM_(2.5)mass concentration, 50% of our sampling days were acceptable(PM_(2.5)〈 75 μg/m^3), 30% had slight/medium pollution(75–150 μg/m^3), and 7% had severe pollution(〉 250 μg/m^3). Sampling interruption occurred frequently for the Teflon filter group(75%) in severe pollution periods,resulting in important data being missing. Further analysis showed that high PM_(2.5)combined with high relative humidity(RH) gave rise to the interruptions. The seasonal variation of PM_(2.5)was presented, with higher monthly average mass concentrations in winter(peak value in February, 422 μg/m^3), and lower in summer(7 μg/m^3 in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM_(2.5). The case of February presented the most serious pollution, with monthly averaged PM_(2.5)of 181 μg/m^3 and 32% of days with severe pollution. The abundance of PM_(2.5)in winter could be related to increased coal consumption for heating needs.展开更多
It is thought that there are many unregulated anthropogenic chemicals in the environment.For risk assessment of chemicals, it is essential to estimate the predicted environmental concentrations. As an effort of identi...It is thought that there are many unregulated anthropogenic chemicals in the environment.For risk assessment of chemicals, it is essential to estimate the predicted environmental concentrations. As an effort of identifying residual organic contaminants in air and water in Korea, nontarget screening using two-dimensional gas chromatography time-of-flight mass spectrometry(GC × GC-TOFMS) was conducted at 10 sites using polyurethane foam passive air sampler and at 6 sites using polydimethyl siloxane(PDMS) passive water sampler in three different seasons in 2014. More than 600 chemical peaks were identified satisfying the identification criteria in air and water samples, respectively, providing a list for further investigation. Chemical substances with reported national emission rates in2014(n = 149) were also screened for potential existence in the environment using a level Ⅱ fugacity model. Most of chemical substances classified as not detectable were not identified with detection frequency greater than 20% by nontarget screening, indicating that a simple equilibrium model has a strong potential to be used to exclude chemicals that are not likely to remain in the environment after emissions from targeted monitoring.展开更多
Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 h...Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air.展开更多
基金supported by the State Environmental Protection Commonweal Trade Scientific Research,Ministry of Environmental Protection of China (No.2013467010)The financial support of this special fund for the public service sector and research support from the staff of Chinese Research Academy of Environmental Sciences (CRAES) (Z141100002714002)
文摘Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon(T1/T2) and Quartz(Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing,with an annual mean PM_(2.5)mass concentration of 102 μg/m^3. According to the calculated PM_(2.5)mass concentration, 50% of our sampling days were acceptable(PM_(2.5)〈 75 μg/m^3), 30% had slight/medium pollution(75–150 μg/m^3), and 7% had severe pollution(〉 250 μg/m^3). Sampling interruption occurred frequently for the Teflon filter group(75%) in severe pollution periods,resulting in important data being missing. Further analysis showed that high PM_(2.5)combined with high relative humidity(RH) gave rise to the interruptions. The seasonal variation of PM_(2.5)was presented, with higher monthly average mass concentrations in winter(peak value in February, 422 μg/m^3), and lower in summer(7 μg/m^3 in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM_(2.5). The case of February presented the most serious pollution, with monthly averaged PM_(2.5)of 181 μg/m^3 and 32% of days with severe pollution. The abundance of PM_(2.5)in winter could be related to increased coal consumption for heating needs.
基金supported by the National Institute of Environmental Research(No.NIER-RP-2014-335)
文摘It is thought that there are many unregulated anthropogenic chemicals in the environment.For risk assessment of chemicals, it is essential to estimate the predicted environmental concentrations. As an effort of identifying residual organic contaminants in air and water in Korea, nontarget screening using two-dimensional gas chromatography time-of-flight mass spectrometry(GC × GC-TOFMS) was conducted at 10 sites using polyurethane foam passive air sampler and at 6 sites using polydimethyl siloxane(PDMS) passive water sampler in three different seasons in 2014. More than 600 chemical peaks were identified satisfying the identification criteria in air and water samples, respectively, providing a list for further investigation. Chemical substances with reported national emission rates in2014(n = 149) were also screened for potential existence in the environment using a level Ⅱ fugacity model. Most of chemical substances classified as not detectable were not identified with detection frequency greater than 20% by nontarget screening, indicating that a simple equilibrium model has a strong potential to be used to exclude chemicals that are not likely to remain in the environment after emissions from targeted monitoring.
基金support by the Hi-Tech Research and Development Program(863) of China(No.2010AA064902)the National Key Technologies R&D Program(No.2016YFC0207100)+1 种基金the National Natural Science Foundation of China(No.21207116)the Brain Bridge project with Philips(No.BB3-2016-01)
文摘Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air.